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Medical robots promise enhanced precision, safety and 
efficacy by working beyond the limits of human percep-
tion and dexterity1,2. Recent advancements in image guid-

ance, perception, robotic planning and computing have provided 
medical robotic systems with the intelligence and manoeuvrabil-
ity to perform challenging interventional tasks on soft tissues with 
supervised autonomy and comparable performance to trained prac-
titioners3–7. One task in which positioning guidance is particularly 
important is percutaneous cannulation of soft tissues such as blood 
vessels. Gaining access to vessels is a critical first step in a plethora 
of diagnostic and therapeutic procedures, including drawing blood, 
administering fluids and medications, introducing endovascular 
devices and monitoring physiological status8,9. The timely deliv-
ery of these interventions can affect morbidity and mortality10, yet, 
in difficult conditions, vascular access can be highly challenging. 
In remote and resource-limited environments, medical person-
nel are often required to perform life-saving tasks under the most 
chaotic circumstances11. Failures are estimated to occur in 20% of 
procedures, and difficulties are exacerbated in patients with small 
(<1 mm diameter), tortuous or collapsed vessels, which are com-
mon in paediatric, elderly, chronically ill and traumatic patients12,13. 
In these groups, first-stick accuracies fall below 50% and five or 
more cannulation attempts are commonly needed, leading to delays 
in access and treatment14. Major bleeding complications can arise 
when critical adjacent tissues (major arteries, nerves or internal 
organs) are punctured, and the risk of complication increases sig-
nificantly with multiple cannulation attempts15. When peripheral 
vessels are inaccessible, more invasive approaches such as central 
venous or arterial access are often required9.

The challenges of difficult vascular access have driven the devel-
opment of imaging technologies that fall into four main catego-
ries: (1) tactile pressure-based imaging, which can provide maps 
of tissue elastic response with sensitivities of several pascals but at 
poor spatial resolutions (>1 mm)16; (2) optical coherence tomog-
raphy and photoacoustic tomography, which have demonstrated 
spatial resolutions of 0.01–0.1 mm but with limited imaging depth 
(1–2 mm)17–20; (3) near-infrared (NIR) optical imaging, which  

utilizes 700–1,000 nm light from lasers or light-emitting diodes 
(LEDs) to image superficial vessels within 5 mm of the tissue sur-
face21,22, but which does not accurately estimate vessel depth beneath 
the skin; (4) ultrasound (US) imaging, which has seen the great-
est clinical adoption and been correlated to higher vascular access 
success and lower complication rates compared to blind cannula-
tion23–25. Modern clinical linear-array US transducers can resolve 
submillimetre tissue structures at suitable depths (0.5–10 cm for 
frequencies of 5–20 MHz) and estimate blood flow velocities using 
Doppler-based modalities. The main limitation of US is the exper-
tise required to obtain optimal views of thin structures in three-
dimensional (3D) space based on 2D planar images. As a result, 
US-guided vascular access is most commonly performed by clinical 
personnel with specialized training26.

Unlike imaging-based methods, which rely on manual inser-
tion, robotic strategies could altogether eliminate the dependence 
on practitioner experience and availability1–3. Commercial robotic 
catheter systems have been approved by the United States Food 
and Drug Administration for navigating inside peripheral ves-
sels during endovascular therapy27, although these systems are not 
image-guided and only help with intravascular navigation following 
successful access. Force, tactile and impedance sensing have been 
reported for detecting vessel puncture events during robotic needle 
insertion, although the initial steps of needle positioning and steer-
ing are still performed manually28–31. More recently, robotic sys-
tems for vessel cannulation have been investigated utilizing duplex 
(simultaneous B-mode and colour Doppler) US vessel imaging32,33, 
monocular NIR imaging34, NIR stereo imaging35,36 or multimodal 
imaging37,38, but closed-loop guidance of these systems has not been 
demonstrated and the feasibility of autonomous operation has not 
yet been achieved.

Here, we present a portable robotic device capable of steer-
ing needles and catheters into submillimetre vessels with mini-
mal supervision (Fig. 1 and Supplementary Fig. 1). Autonomous 
robotic guidance is driven by a deep learning39 framework that 
takes bimodal NIR and duplex US imaging sequences as its inputs 
and performs a series of complex vision tasks, including vessel  
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segmentation, classification and depth estimation. Using the device, 
we evaluate image-guided robotic tracking in humans, and we 
compare autonomous robotic cannulation to manual performance 
in  vitro (in tissue-mimicking phantoms simulating broad demo-
graphic variability) and in vivo (anaesthetized rat models of super-
ficial venous access).

Results
End-to-end workflow for robotic vascular access. The device 
relies on the complementary use of NIR and US imaging (Fig. 2a)  
to achieve an end-to-end robotic workflow. NIR imaging pro-
vides non-contact visualization of superficial vessels over a broad 
(20 × 15 cm) field of view, while US imaging allows focal visualiza-
tion of a target vessel and facilitates submillimetre pose adjustments 
to compensate for vessel motion. The robotic cannulation involves 
a sequence of automated tasks:
	1.	 Automatically load, and later dispose of the needle.
	2.	 Scan the arm under NIR stereo imaging and reconstruct a 3D 

surface map of segmented vessels.
	3.	 Identify a suitable vessel as the target cannulation site (current-

ly performed by the operator).
	4.	 Robotically position the US transducer above the target vessel 

while compensating for arm motion.
	5.	 Segment and track the target vessel in the US image while dif-

ferentiating arteries from veins.
	6.	 Robotically align the needle with the target vessel in 6-DOF 

space while compensating for arm motion.
	7.	 Guide the needle into the target vessel under US image feed-

back, again while compensating for vessel motion.
	8.	 Confirm successful lumen access or identify failed cannulation 

based on US and force feedback.
	9.	 Draw blood or deliver fluids.

The device automates the handling of disposables before and 
after the procedure (Supplementary Fig. 2a) and is designed to be 

able to instantaneously release the needle on detection of sudden 
motions (Fig. 4e,f) or excess forces at the needle tip (Supplementary 
Fig. 2b–e) during cannulation. The device is further capable 
of drawing blood into sample collection vials or advancing  
peripheral catheters up to 25 mm beyond the access point 
(Supplementary Fig. 1b).

Deep learning encodes spatiotemporal information for autono-
mous image guidance. In the NIR guidance step, the robot infers 
from a deep neural network trained to simultaneously segment, 
track and compute the depth of peripheral vessels from stereo 
camera image sequences (Fig. 2b, top). The deep learning model is 
based on a recurrent fully convolutional network (Rec-FCN) archi-
tecture40,41 whose design attempts to capture salient image features 
and motion signatures at multiple resolution scales (Fig. 2c and 
Supplementary Figs. 3–5). The network takes, as input, stereo image 
pairs from the current frame and encoded features generated by the 
network in previous frames. The outputs are a pair of dense vessel 
segmentations and a dense disparity map (Supplementary Fig. 3). 
We derive a 3D map of the arm surface and vasculature, from which 
the operator may select a target vessel that is subsequently tracked 
in real time in the presence of arm motion.

In the US guidance step, the robot positions the transducer based 
on the 3D vessel pose computed according to the predictions of the 
first network and lowers the transducer against the arm surface 
(Fig. 2b, bottom). A second network, also based on the Rec-FCN 
architecture, operates on B-mode and colour Doppler image (CDI) 
sequences to predict dense segmentations of veins and arteries (Fig. 
2d and Supplementary Fig. 4).

Automated vessel segmentation and stereo reconstruction from 
NIR image sequences. We compared expert manual vessel seg-
mentation and deep learning segmentation from NIR stereo image 
sequences in left and right forearms of 22 adult volunteers (n = 44). 
Deep learning segmentation based on the Rec-FCN architecture 
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Fig. 1 | Autonomous image-guided robotic vascular access, blood drawing and fluid delivery. a, The device couples bimodal 3D vessel imaging and 
adaptive robotic instrument manipulation within a compact shell. The robot comprises a six-degrees-of-freedom (6-DOF) base positioning unit and a 
3-DOF distal manipulator that performs autonomous cannulation under NIR and US image guidance. b, End-to-end workflow for robotic vascular access. 
The robotic guidance is driven by a pair of trained deep convolutional neural networks operating on continuous NIR and US imaging sequences.
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Fig. 2 | Bimodal vessel imaging and analysis with deep convolutional neural networks. a,b, NIR and US image acquisition (a) and analysis (b) along with 
processing times for each step (for details see Supplementary Fig. 11). The point (xt, yt, zt) indicates the cannulation target selected based on NIR imaging. 
Vector nt indicates the normal direction from the arm surface at (xt, yt, zt), computed from NIR stereo reconstruction. c, Recurrent fully convolutional 
network (Rec-FCN) operating on NIR image sequences. Inputs are two-channel tensors (dimensions 384 × 288 × 2) comprising rectified left and right 
stereo image pairs. Outputs are three-channel tensors (384 × 288 × 3) comprising left vessel segmentations, right vessel segmentations and disparity 
predictions, from which 3D vessel orientation is computed. ht indicates the network’s encoded features. d, Rec-FCN model operating on B-mode and colour 
Doppler image (CDI) sequences. Inputs are two-channel tensors (dimensions 512 × 416 × 2). Outputs are two-channel tensors (512 × 416 × 2) of vein 
and artery segmentations. e, Comparison of upper-extremity veins identified under NIR imaging by Rec-FCN and expert assessment. Positive detection 
is defined as mean Dice score exceeding 0.70 across all image frames containing the target vessel. f, Comparison of upper-extremity veins and arteries 
identified by manual segmentation under US guidance, clutter filtering of CDI sequences, Rec-FCN segmentation of B-mode sequences and segmentation 
of concatenated B-mode and CDI sequences (Rec-FCN-CDI). Positive detection is defined as mean Dice score exceeding 0.70 across all image frames 
containing the target vessel (f). Bars show mean ± s.d. of number of vessels identified across participants. †Equivalence determined using a two one-sided 
t-tests (TOST) procedure (e,f). *Kruskal–Wallis one-way analysis of variance (ANOVA) with Dunn’s post hoc test (f).
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was able to detect a majority of upper-extremity venous branches 
that were observed by manual assessment (73.9% (195/264) of veins 
detected by Rec-FCN compared to 78.8% (208/264) by manual 
assessment; two one-sided t-test (TOST) equivalence test, P = 0.085; 
positive detection defined as mean Dice score >0.70 across all image 
frames containing the vessel) (Fig. 2e). We also compared the pixel-
wise accuracy of the predictions to expert annotations based on 
Dice score (0.80 ± 0.18), Jaccard index (0.74 ± 0.20) and modified 
Hausdorff distance (2.06 ± 1.69 mm overall, 1.09 ± 0.85 at the can-
nulation target) (Fig. 3a,b and Supplementary Method 1). Inference 
on image sequences improved the segmentation accuracy compared 
to fully convolutional networks (FCNs) without recurrence operat-
ing on independent image frames (Fig. 3a).

Three-dimensional arm surface reconstructions computed 
from predicted disparity maps (Supplementary Fig. 6) had mag-
nitude errors (calculated based on modified Hausdorff distance) 
of 2.52 ± 0.87 mm compared to ground-truth measurements 
(2.24 ± 0.75 mm error at the cannulation site) (Fig. 3a), which 
was sufficiently accurate to guide robotic placement of the US 
transducer over the skin. Again, the recurrent network produced  
lower reconstruction errors compared to single-frame predic-
tions. Finally, features extracted from the segmentations were 
predictive of the suitability of individual branches for cannulation 
(Supplementary Fig. 8).

Automated vessel segmentation and classification from duplex 
US sequences. In the subsequent US visualization, we compared 
manual and deep learning vessel segmentation and classification in 
22 volunteers. Rec-FCN segmentation based on concatenated two-
channel duplex images detected the majority of venous and arterial 
branches in the forearm that were identified by manual assessment 
(86.4% (342/396) vessels detected compared to 92.4% (366/396) 
by manual assessment; TOST equivalence test, P = 0.036; positive 
detection defined as mean Dice score >0.70 across all image frames 
containing the vessel; Fig. 2f). Furthermore, the method demon-
strated significantly increased sensitivity compared to Rec-FCN 
segmentation based on single-channel B-mode images alone (319 
of 396 (80.6%) vessels detected; 87.2% sensitivity; Kruskal–Wallis 
one-way ANOVA with Dunn’s post hoc test, P = 0.025) as well as 
to clutter filtering42 of the CDI alone (279 of 396 (70.5%) vessels 
detected; 76.2% sensitivity; P < 0.0001). We observed submillime-
tre segmentation errors relative to expert annotations (modified 
Hausdorff distance 0.54 ± 0.64 mm; Dice score 0.84 ± 0.12; Jaccard 
index 0.77 ± 0.21) and saw that predictions on sequences outper-
formed predictions on single frames (Fig. 3a,c and Supplementary 
Fig. 9).

Analysis of statistical measures of binary classification 
(Supplementary Method 2) revealed that Rec-FCN predictions from 
either B-mode or concatenated two-channel duplex images were 
more reliable in differentiating veins and arteries than CDI clutter 
filtering42 (Fig. 3d). ROC curves (Fig. 3e), precision-recall curves 
(Fig. 3f) and individual classification metrics (Supplementary  
Fig. 10) showed that inference on temporal sequences again 
improved classification performance compared to single-frame  
predictions.

Real-time robotic tracking and motion compensation. During 
NIR-guided tracking, the device compensates for arm motion by 
continuously computing the 3D pose of segmented vessel targets 
and making submillimetre adjustments to keep the target within 
the centre of the imaging field of view (FOV). Similarly, after the 
US transducer is lowered, the robot adjusts the pose of the US 
transducer to maintain skin contact and vessel alignment. We 
evaluated NIR- and US-guided robotic tracking under widely vary-
ing arm motions in left and right forearms of 13 adult volunteers 
(Fig. 4a,b). Tracking errors resulting from Rec-FCN predictions  

on image sequences (1.65 ± 1.07 mm and 1.82 ± 1.85° mean abso-
lute translational and rotational errors under NIR guidance; 
0.97 ± 0.25 mm and 1.55 ± 1.40° under US guidance) were found to 
be lower than errors based on predictions from single image frames 
(Supplementary Fig. 12).

We observed that faster arm motions resulted in larger track-
ing errors (Fig. 4c). In particular, sudden translations and rotations 
that exceeded the device’s velocity limits would lead to a temporary 
lag in the tracking trajectory (Fig. 4b). We investigated whether 
the device could detect these sudden changes as a potential way 
to minimize injury risk; retrospective analysis of the NIR and US 
sequences showed that frame-to-frame motion estimates derived 
from the predicted segmentations (Supplementary Fig. 7) correlated 
strongly with true frame-to-frame displacements (based on man-
ual segmentations) across the range of motions seen in the study  
(Fig. 4d). Furthermore, we found that the frame-to-frame estimates 
could serve as reliable indicators of sudden motion (Fig. 4e,f) and 
thereby facilitate the deployment of critical safety mechanisms in an 
automated manner.

In  vitro autonomous cannulation across a broad physiological 
spectrum. We next investigated the effects of physiological and 
demographic variability on robotic performance using multilay-
ered tissue-mimicking phantom models. The models comprised 
five tissue layers (epidermis, dermis, hypodermis, blood vessels 
and blood) and were tailored to reproduce the mechanical, optical 
and acoustic properties of human tissues over a broad demographic 
range (Fig. 5a and Supplementary Fig. 13)43. We applied a fractional 
factorial experimental design to optimize robotic insertion speed, 
insertion angle and needle size (Supplementary Fig. 14a) and assess 
device performance (using the optimized insertion settings) across 
15 tissue properties (Supplementary Fig. 14c). We found that the 
insertion parameters that maximized robotic performance were 
not constant but instead varied across different tissue conditions 
(Supplementary Fig. 14b). Specifically, four of the 15 tissue prop-
erties (skin tone, hypodermis thickness, hypodermis elasticity and 
vessel diameter) were found to significantly influence cannulation 
success (Fig. 5b and Supplementary Fig. 14d).

We then compared autonomous robotic vascular access to man-
ual cannulation without image guidance, with NIR image guid-
ance and with US image guidance. We employed a full factorial 
experiment to evaluate the response to variation in the four tissue 
parameters identified previously (Supplementary Fig. 15). Mean 
first-attempt success rates for manual unassisted, manual NIR-
guided and manual US-guided vascular access across these challeng-
ing conditions were 52.7%, 59.3% and 68.4%, respectively (Fig. 5c). 
Robotic vascular access resulted in 88.2% first-attempt success—a 
significant increase from the manual success rates (Kruskal–Wallis 
one-way ANOVA with Dunn’s post hoc test, P < 0.0001 for all pair-
wise comparisons between robotic and control groups). Similarly, 
the robotic approach reduced the mean number of failed cannula-
tion attempts per procedure (P < 0.01 for all pairwise comparisons 
to control groups) and the total time to access (P < 0.0001 for all 
pairwise comparisons to control groups). Compared to manual 
cannulation, the robotic approach demonstrated greater consis-
tency in performance across the spectrum of tissue conditions, with 
the largest gains seen in the most difficult conditions (Fig. 5d and 
Supplementary Figs. 16–19). Robotic cannulation also reduced, 
among the total failed vascular access attempts, the percentage of 
unintended punctures of the posterior wall, as identified by visual-
ization under B-mode US (Fig. 5c,d). Finally, retrospective analysis 
of US frames acquired during robotic cannulation demonstrated 
the possibility of automatically distinguishing successful and failed 
vascular access attempts based on the observed displacement of the 
vessel and predicted location of the needle tip at the time of punc-
ture (Fig. 5e,f and Supplementary Fig. 20).
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value; TPR, true positive rate; FPR, false positive rate. *Kruskal–Wallis one-way ANOVA with Dunn’s post hoc test.
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Fig. 4 | Real-time robotic tracking and motion compensation. a, Time-series images of robotic vessel tracking on a volunteer. Insets show upper extremity 
vessels segmented from NIR image acquired prior to robotic tracking. Blue circles, tracked cannulation targets for different vessel branches; white arrows, 
desired robotic needle pose at each target. Adapted from ref. 38. b, Representative trajectories observed during the first 60s (left) and first 5s (right) of 
NIR- and US-guided robotic tracking in comparison to ground-truth target trajectories. c, Absolute translational εtransj j

I
 and rotational εrotj j

I
 errors observed 

during robotic tracking, shown in comparison to ground-truth motions vtransj j
I

 and vrotj j
I

. Errors are defined by magnitude differences between robotic and 
target positions in each frame. Ground-truth motion is defined as the magnitude velocity of the cannulation target in each frame, determined from manual 
annotation. ε̂j j
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 and v̂j j

I
 indicate upper quartiles of error and ground-truth distributions, respectively. d, Correlation of predicted frame-to-frame translations 
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 and 
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) velocity distributions under NIR and US guidance. R2, coefficient of determination. e, ROC (left) and precision-recall (right) curves indicating the 
reliability of classifying sudden arm movements based on predicted frame motions. Individual curves reflect varying velocity cutoff values defining sudden 
movement. In the two highlighted curves, velocity cutoffs were set to the upper quartiles of the translational and rotational velocity distributions vq3NIR
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 and 
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. Triangles indicate positions of maximum predictive performance based on Youden’s J statistic (left) and F1 score (right). TPR, true positive rate; FPR, 
false positive rate. f, Reliability of detecting sudden arm movements (exceeding the upper quartiles of observed velocity distributions) during NIR (left) 
and US (right) guidance, based on four binary classification metrics (for definitions see Supplementary Method 2).
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In vivo autonomous blood drawing and fluid delivery in submil-
limetre vessels in rat models. To evaluate in vivo vascular access 
in submillimetre vessels, we conducted image-guided robotic can-
nulations on lateral tail veins of 20 fully anaesthetized adult rats (13 
white-coated (WC) and seven black-coated (BC)) and compared 
the performance to manual cannulation. Rat tail vein cannulations 
were chosen because the diameter (0.75 ± 0.21 mm) and depth 
(1.35 ± 0.52 mm) of the vessels were comparable to measurements 
in paediatric populations14. NIR and US imaging (Fig. 6a,b and 
Supplementary Fig. 21) increased the percentage and path length 
of detected vessels compared to manual assessment under visible 
light (Fig. 6c,d).

To compare manual and autonomous cannulation in the ani-
mals, 94 cannulation trials (24 unassisted manual, 23 NIR-guided 
manual, 21 US-guided manual and 31 robotic) were carried out on 
the 20 anaesthetized rats along with collection of 250 µl of blood 
and delivery of 250 µl saline bolus (Fig. 6e,f). Autonomous robotic 
cannulation improved the rates of first-attempt access (87.1% for 
the device versus 58.3% for unassisted manual (Kruskal–Wallis 
one-way ANOVA with Dunn’s post hoc test, P = 0.016), 69.6% for 
NIR-guided manual (P = 0.097) and 61.9% for US-guided manual 
(P = 0.036); Fig. 6g). Similar improvements were observed in the 
success rates of blood collection and fluid delivery. Finally, robotic 
cannulation reduced the number of failed cannulation attempts 
(Fig. 6h), mean completion time per trial (Fig. 6i) and percentage 
of detected posterior wall punctures (Fig. 6j) compared to manual 
techniques.

Discussion
Over 90% of diagnostic and therapeutic procedures in the emer-
gency room, intensive care unit, catheterization lab and operating 
room require gaining vascular access8,13. Approximately one billion 
vascular access procedures are performed annually in the United 
States (and approximately four billion procedures worldwide)13. We 
focused on cannulation of upper-extremity peripheral vessels, which 
are the most common targets for cannulation (>95% of total proce-
dures8) and considered particularly challenging due to their small 
size (typically 2 to 3 mm in adults and <1 mm in children) and ten-
dency to roll or collapse44. In our studies, autonomous robotic cannu-
lation reduced the mean number of failed access attempts by sixfold 
(1.8 per trial to 0.3 per trial) and increased first-stick success rates 
from 53% to 88% compared to blind manual access, with the largest 
gains seen in the most difficult physiological conditions (Fig. 5c,d).  
Moreover, we found that variance in robotic performance in the 
presence of physiological variability was lower than the variance of 
manual cannulation with or without image guidance. We posit that, 
by lowering the likelihood of failed attempts, robotic cannulation  

could prevent injuries from multiple sticks, reduce complication 
rates and minimize the need for central catheter placement follow-
ing unsuccessful peripheral access15,45. The present work provides 
motivation for further assessment of clinical benefits and risks 
across a broader demographic spectrum that includes both normal 
and difficult populations.

Safety remains a central concern in the development of medi-
cal robots, particularly those with potential autonomous capabili-
ties. We described several mechanisms to reduce the risks of injury 
during vascular access. We showed that sudden arm motions could 
be detected from the NIR and US sequences (Fig. 4d–f), and have 
coupled the needle to a 5 N load sensor that continuously measures 
axial forces at the needle tip (Supplementary Fig. 2b–e). We designed 
the device to electromagnetically release the needle when sudden 
motions or excessive insertion forces are detected. Furthermore, 
we observed in  vitro that failed access attempts (including poste-
rior wall punctures, which are a common cause of access-related 
injuries such as extravasation and arteriovenous fistula creation12) 
could be recognized based on analysis of vessel motion and needle 
tip position in the US image at the time of cannulation (Fig. 5e,f and 
Supplementary Fig. 20). Future studies will extend these character-
izations in vivo and evaluate the reliability of these combined safety 
mechanisms in the clinical setting.

In the current device, robot trajectories are updated according 
to the vessel pose computed from deep neural network predic-
tions. However, rather than using deep learning to control robot 
motions in an end-to-end manner, trajectories are determined from 
the robot kinematic parameters based on set control policies. It is 
possible, however, that such policies should be context-specific. 
Learning-based strategies, for instance based on recurrent networks 
or reinforcement paradigms46, have shown promise in producing 
optimal policies for robotic surgical tasks47. Subsequent efforts will 
investigate whether learned trajectories result in better performance 
outcomes compared to traditional methods of robotic control.

Full end-to-end autonomy will require the ability to recognize 
suitable vascular access locations, define secondary sites when ini-
tial attempts fail, select proper needle and catheter sizes, and adapt 
to individual differences in anatomy and physiological status. In our 
NIR imaging studies, we demonstrated that, in a majority of cases, it 
was possible to identify vessel branches deemed appropriate for can-
nulation based on predictive analysis of combined image features 
extracted from deep learning-based segmentations (Supplementary 
Fig. 8). Similar observations have been reported in previous stud-
ies20,36,48. Nevertheless, human experts rely also on anatomical and 
clinical knowledge when defining a strategy for vascular access and 
make judgements based on information not easily described by 
low-level descriptors alone. Future efforts will investigate methods 

Fig. 5 | Autonomous cannulation in tissue-mimicking models over a broad demographic spectrum. a, Multilayered models simulating optical (absorption 
μa, scattering μs′), acoustic (attenuation α, backscattering β, sound speed c), mechanical (elasticity E, shear modulus G, viscosity η) and geometric (tissue 
thickness 𝜏, vessel depth δ, vessel diameter d) properties of human skin and vessels43. b, The main effects of two-level fractional factorial evaluation of 
robotic first-attempt success across 15 tissue conditions (Supplementary Fig. 14c,d). c, Comparison of unassisted manual (n = 160 total trials), NIR-guided 
manual (n = 160), US-guided manual (n = 160) and robotic (n = 320) cannulation in a full factorial (four-variable, two-level) experiment consisting of 
16 independent combinations of tissue conditions (Supplementary Fig. 15). Posterior wall puncture rate is reported as the percent of failed attempts 
per trial. Subgroup analyses are reported in Supplementary Figs. 16–19. d, Cannulation performance across the 16 tissue conditions, shown in order of 
increasing difficulty. Grey shaded regions indicate conditions for which robotic cannulations significantly outperformed manual trials. e, Vessel magnitude 
displacements ||<∂x, ∂y>|| (mm) and estimated final needle tip locations, nfinal ∈ {nin, nout, nnone} (nin, needle tip inside vessel; nout, needle tip outside vessel; 
nnone, needle tip not detected) in successful and failed robotic cannulation attempts across 16 tissue conditions. Needle tip location is estimated based on 
image analysis using a statistical model-fitting algorithm (Supplementary Fig. 20a). Successful access determined by observation of blood flash in the 
needle hub following cannulation. f, ROC (left) and precision-recall (right) indicating reliability of predicting failed punctures. Predictors: absolute lateral 
vessel displacement |∂x| (mm), absolute axial vessel displacement |∂y| (mm), vessel magnitude displacement ||<∂x, ∂y>|| (mm), and predictions from an 
elastic-net regularization generalized linear model GLM-net (∂x, ∂y, nfinal) (for details see Supplementary Fig. 20b). Triangles indicate positions of maximum 
predictive performance based on Youden’s J statistic (left) and F1 score (right) (see definitions in Supplementary Method 2). TPR, true positive rate; FPR, 
false positive rate. #P < 0.05, ##P < 0.01, ###P < 0.001, unpaired t-tests with Bonferroni correction (b,e). *One-way ANOVA with Tukey’s honestly significant 
difference (HSD) test (c,d; bars show mean ± s.d.). †Kruskal–Wallis one-way ANOVA with Dunn’s post hoc test (c,d; bars show percentages).
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to capture richer anatomical representations and test whether an 
autonomous system utilizing such methods can determine appro-
priate cannulation routes reliably.

The robotic paradigm may be extended to address clinical 
challenges in minimally invasive endovascular workflows, where 
accurate cannulation of major vessels (such as the common fem-
oral artery) is a prerequisite to surgical success and where repeat 
punctures increase the risk of arterial trauma and haemorrhage15,25. 
Outside the hospital, robotic technologies could allow emergency 
medical providers to obtain rapid vascular access under time-critical  

conditions and bring advanced interventional and resuscitation 
capabilities to remote and resource-limited environments11. Finally, 
the device has the potential to serve as a platform to merge auto-
mated phlebotomy and diagnostic blood analysis, facilitating the 
provision of critical haematological information at the point of the 
blood draw49,50.

In summary, the present study demonstrates the preclinical 
feasibility of autonomous, image-guided robotic vascular access, 
blood drawing and fluid delivery. The findings provide evidence 
that, by exploiting the capacity of modern deep networks to encode  
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multimodal spatiotemporal imaging information, autonomous 
systems may be able to outperform human experts on challenging 
visuomotor tasks in dynamic environments. Such systems, if success-
fully translated, offer the possibility of reducing injuries, improving 
procedural efficiency and outcomes, carrying out tasks with mini-
mal supervision when resources are limited, and allowing human 
attention to be dedicated to other critical aspects of medical care.

Methods
Deep learning architecture. The deep Rec-FCN models trained for NIR and US 
guidance are based on a neural network architecture that embeds a recurrent 

block within a U-net-like40,41,51 fully convolutional encoder–decoder network 
(Fig. 2c,d and Supplementary Figs. 3–5). We applied stride-2 convolutions using 
3 × 3 kernels for downsampling in the encoder and corresponding transpose 
convolutions for upsampling in the decoder. Each convolutional layer is preceded 
by batch normalization52 and followed by nonlinear activation using parametric 
rectified linear units53. Residual connections (identity mappings based on element-
wise summation)54 are introduced within each convolutional block to lessen the 
potential influence of vanishing gradients. We incorporated skip connections 
(concatenation along channel dimensions)40 between the encoder and decoder 
layers to combine semantic information across feature resolutions. Similarly,  
within the recurrent block, latent features produced by the encoder are 
concatenated with features from previous time steps before being passed to 
the decoder. We evaluated three recurrent units (a standard recurrent neural 
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Fig. 6 | In vivo autonomous blood drawing and fluid delivery in submillimetre vessels of rats. a, Rat lateral tail vein imaging under visible (VIS, 453 nm) 
and near-infrared (NIR, 914 nm) light. Top images: light source ipsilateral to detector, image formation from backscattered light. Lower images: light source 
contralateral to detector, image formation from ballistic light. b, Robotic tail vein cannulation under US guidance. c,d, Percentage (c) and path length (d) of 
lateral tail veins detected by VIS, NIR and US vein imaging in 13 WC and 7 BC rats (26 and 14 lateral tail veins, respectively). e, Real-time visualization of 
lateral tail veins under NIR imaging during manual and robotic cannula insertion. f, Automatic tail vein cannulation and blood collection using the robotic 
device. g–j, Comparison of unassisted manual, NIR-guided manual, US-guided manual, and robotic cannulation, blood drawing and fluid delivery in tail 
veins of anaesthetized rats. *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA with Tukey’s HSD test (d,h,i; bars show mean ± s.d.). †P < 0.05, ††P < 0.01, 
†††P < 0.001, Kruskal–Wallis one-way ANOVA with Dunn’s post hoc test (c,g,j; bars show percentages). Yellow arrows indicate cannulation targets (b,e,f).
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network (RNN)55, a convolutional long short-term memory (LSTM) unit56 
and a convolutional gated recurrent unit (GRU)57,58) for temporal inference 
(Supplementary Fig. 5). We used convolutional GRU in the present work. We also 
evaluated a variant of the Rec-FCN architecture that incorporates a recurrent unit 
at each spatial resolution level within the encoder–decoder structure, but we did 
not observe significant differences in performance using this approach compared 
to models with recurrent connection at the innermost layer only.

The first network (Fig. 2c) was trained on previously acquired NIR video data 
of left and right forearm vessels from nine healthy participants59. Inputs into the 
network were two-channel tensors with dimensions 384 × 288 × 2, with channels 
comprising rectified left and right stereo NIR images. The labels and outputs were 
three-channel tensors with dimensions 384 × 288 × 3, with channels comprising the 
left segmentation, right segmentation and disparity maps, respectively. We used a 
multi-task loss function60–62

LossOverall ¼ w1Loss
Segmentation
Generalized Dice þ w2Loss

Segmentation
Weighted Cross Entropy

þw3Loss
Disparity
Mean Squared Error þ w4Loss

Disparity
Total Variation

with weights w1 = 0.5, w2 = 0.1, w3 = 0.3 and w4 = 0.1 such that the segmentation 
loss terms were applied only to the segmentation output channels and the disparity 
loss terms were applied only to the disparity output channel. For network training, 
NIR video acquisitions were split into 0.5 s sequences, each containing 15 frames, 
and introduced into the deep learning model alongside manually generated 
segmentation and disparity labels (for annotation details see Supplementary 
Method 4). During testing, the model operated on continuous sequences. In total, 
186 short sequences (2,790 annotated frames) were used in training and validation, 
and 22 full sequences (8,912 acquired frames, of which 595 were annotated) were 
used in testing.

The second network (Fig. 2d) was pre-trained on two public US image 
datasets63,64 and fine-tuned on previously acquired transverse 2D US images 
of peripheral upper-extremity vessels from nine subjects using two clinical US 
transducers (L18-10L30H-4, Telemed Ultrasound and SeeMore Near-Field 
7.5/24 MHz, Interson)59. Inputs were two-channel tensors with dimensions 
512 × 416 × 2 containing B-mode and CDIs. In the color Doppler channel, we 
applied a five-fold increase in image gain to venous (negative) flow velocities. The 
loss function was given by60,61

LossOverall ¼ w1Loss
Segmentation
Generalized Dice þ w2Loss

Segmentation
Weighted Cross Entropy

with weights w1 = 0.8 and w2 = 0.2. The loss terms were applied to the output 
channels individually and then summed across the channels. As before, videos were 
split into 0.5 s sequences containing 11 frames each, which resulted in the inclusion 
of 278 short sequences (4,326 annotated frames) along with manual ground-
truth segmentation labels for training and validation (see annotation details in 
Supplementary Method 4). In testing, 22 full sequences (15,342 acquired frames, 
including 1,018 annotated frames) were used.

For both networks, we applied standard data augmentation techniques 
including random rotation, horizontal and vertical flips, cropping and scaling, 
and gain and contrast adjustment. We also performed temporal augmentation by 
alternating the direction of the sequences between epochs and by applying window 
warping (randomly adjusting the time step between frames within each sequence 
to effectively speed up or slow down the motion)65. Each network was trained end-
to-end using the standard stochastic gradient descent algorithm with the Adam 
optimizer66 and L2 weight decay regularization67. The networks were implemented 
using the Tensorflow library68.

Bimodal NIR and US vessel imaging. In the NIR guidance step, the robot infers 
from the first trained network to segment and compute the 3D pose of peripheral 
vessels. Arm motions are estimated based on frame-to-frame non-rigid registration 
of the predicted segmentations. The robot positions the US transducer against the 
arm surface based on the predictions of the first network while adjusting to the 
estimated arm motions. Because the depth of the arm surface is computed from the 
NIR stereo image sequences, the device is able to position the transducer against 
the skin and maintain acoustic contact without applying excess pressure, which 
could lead to vessel compression. In the US guidance step, the second network 
segments the vessel lumen and classifies each segmented vessel as either a vein or 
artery based on B-mode and colour Doppler sequences. As before, frame-to-frame 
motion is estimated from the sequence of segmentation predictions and used to 
continuously update the robot trajectory before and during cannulation.

The NIR light source comprises an array of 15 LEDs each with dimensions 
of 2.0 × 1.5 mm. We used LEDs with wavelengths centred at 757 and 914 nm to 
maximize the optical absorption in blood while minimizing absorption from 
water and fat21. Two miniature CMOS cameras (VRmUsb12, VRMagic) were 
geometrically calibrated to form a stereo vision system that acquires pairs of 
752 × 480 images at 31 Hz. In the stereo image rectification step, the images are 
downsampled to 384 × 288. Each camera is coupled with a wide-angle (120°) lens 
and a polarizing filter. The filter is oriented orthogonal to a second set of polarizers 
above the LED arrays to eliminate specular reflections at the skin surface based on 
cross-polarization gating.

In the phantom and human studies, we used an 18 MHz clinical linear-array 
US transducer (L18-10L30H-4, Telemed) with a longitudinal imaging field of 3 cm, 
maximum depth of 5 cm and focal depth of 1 cm. B-mode images and CDIs were 
acquired at 22 Hz. We extended the Doppler region of interest to approximately 
the width of the B-mode image size and fixed the Doppler angle and gain. In 
the in vivo studies, we compared imaging quality between the 18 MHz clinical 
transducer (Supplementary Fig. 21a) and a high-frequency 32 MHz transducer 
(Vevo MS550S, VisualSonics; Supplementary Fig. 21b). The higher frequency 
resulted in improved visualization of vessels with diameters as low as 300 μm and 
at depths of up to 15 mm. The increased frequency also improved the sensitivity of 
CDI in submillimetre vessels.

Robotic system design. The device (Fig. 1 and Supplementary Fig. 1) is 
1.0 × 0.9 × 0.7 cubic feet in volume and weighs 3 kg. The robotic system consists of 
a 6-DOF base positioning system and a 3-DOF distal manipulator, resulting in 9 
DOF in total. The base positioning system serves to position and orient the distal 
manipulator along the skin surface, orient the cameras and align the US transducer 
and needle with the target vessel. The 3-DOF manipulator (0.5 kg weight, 
7 × 3 × 8 cm volume) couples the NIR imaging system, US transducer and motorized 
insertion mechanism into a single modular unit and is mounted directly to the base 
positioning system. Forces at the needle tip are measured with a 5 N uniaxial force 
sensor (FSG-5, Honeywell) integrated in the 3-DOF manipulator (Supplementary 
Fig. 2b). A routine was implemented for simultaneous calibration of the intrinsic 
camera and US image parameters, extrinsic camera-to-robot and US-to-robot 
parameters, and robot joint parameters69. Real-time software for image-guidance 
and robotic control were developed in LabVIEW and C++ and utilized open-
source libraries including OpenCV70, Point Cloud Library71 and ITK72. Further 
details of the system design are described in Supplementary Method 3.

Vessel imaging and robotic tracking on healthy volunteers. Twenty-two healthy 
volunteers, 18 years of age and older, were recruited following approval by the 
Rutgers University Institutional Review Board. The left and right forearm, wrist 
and hand of each volunteer were imaged by the device under NIR illumination. 
Retrospective analysis identified six upper-extremity superficial venous branches 
consistently across participants (Fig. 2e). Ground-truth segmentations were 
generated on a frame-by-frame basis. For each subject, one resulting ground-truth 
segmentation frame from each detected vessel branch was confirmed by expert 
review. Arterial branches were not evaluated, as the increased depth of the arteries 
(typically >5 mm beneath the skin surface) limited their visibility under NIR light.

Transverse 2D US imaging identified six upper-extremity venous branches and 
three upper-extremity arterial branches across participants (Fig. 2f). Ground-truth 
segmentations were generated manually, with one resulting segmentation frame 
from each detected vessel confirmed by expert review. The reviewed frames were 
then used to evaluate binary classification of veins and arteries (Fig. 3d,e). For 
colour Doppler acquisitions, clutter signals were suppressed using finite impulse 
response filtering with default upper-extremity venous presets provided by the 
commercial US systems42. Methods for ground-truth annotation are described in 
Supplementary Method 4.

Thirteen volunteers were subsequently enrolled in the robotic tracking study. 
To measure tracking errors over varying speeds, each volunteer was asked to move 
his or her arm inside the device workspace for 60 s with random motions (Fig. 4a). 
A target cannulation site, selected randomly from among the detected vessels, was 
robotically tracked under NIR and US image guidance. Frame-to-frame motion 
along the segmented vessel centrelines was estimated based on deformable point 
set registration73 (Supplementary Fig. 7). In the NIR-guided tracking phase, the 
objective was to maintain the target vessel at the centre of the NIR imaging field. 
Similarly, the robot looked to centre the target vessel within the US image during 
US-guided tracking. The ground-truth positions of the vessel target across all NIR 
and US image frames were retrospectively determined with manual confirmation. 
Ground-truth vessel positions were then compared to the robotic tracking 
positions to compute tracking errors (Fig. 4b,c and Supplementary Fig. 12). We did 
not evaluate robotic needle insertion accuracy in these studies, as the robot did not 
cannulate through the skin.

In vitro studies on tissue-mimicking models. The randomized in vitro 
studies consisted of three sets of experiments. First, we optimized three robotic 
cannulation parameters (insertion angle (15° and 30°), insertion speed (1 and 
10 mm s−1) and needle size (21 and 25 G)) using tissue-mimicking models 
(Supplementary Fig. 14a). Needle lengths of 1 inch were used in all phantom 
cannulation trials. The results of the optimization (Supplementary Fig. 14b) were 
used in defining cannulation settings for the subsequent in vitro and in vivo 
experiments.

Second, we investigated robotic cannulation across 15 physiological and 
anatomical parameters simulated using in vitro tissue-mimicking models (Fig. 
5a,b). We employed a fractional factorial experimental design (specifically, an 
L16 (263) orthogonal array of parameter combinations; Supplementary Fig. 14c,d) 
that constrains the input parameters to be orthogonal to one another and ensures 
an unbiased, uniform and maximally efficient sampling of the parameter space74. 
Ten replicate cannulation trials were carried out per experimental condition in 
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randomized order, along with withdrawal of 1 ml of blood-mimicking solution 
and intravenous delivery of 1 ml saline. The physiological ranges of each tissue 
parameter are summarized in Supplementary Fig. 13 and described previously43.

Third, we compared autonomous robotic cannulation (n = 320 total trials) to 
manual cannulation without image guidance (n = 160 trials), with NIR guidance 
(n = 160 trials) and with US guidance (n = 160 trials) (Fig. 5c,d and Supplementary 
Figs. 15–19). We employed a full factorial experiment using 16 different models 
(Supplementary Fig. 15a). We evaluated the four tissue parameters observed to 
most strongly influence device performance in the earlier fractional factorial 
studies (Fig. 5b). Specifically, the models encompassed two epidermis absorption 
coefficients (5 and 45 cm−1, measured at 914 nm), two hypodermis elasticities (5 
and 25 kPa), two hypodermis thicknesses (2 and 5 mm) and two vessel diameters 
(1 and 3 mm). Based on the results of the first set of optimization experiments 
(Supplementary Fig. 14b), we used 25 G needles of 1 inch length, device insertion 
angle of 30° and insertion speed of 10 mm s−1. For manual cannulations, 10 
randomized, replicate trials were performed per tissue condition, with cannulation, 
blood draw and saline delivery as endpoints. For robotic cannulations, 20 trials 
were performed per condition. The manual cannulations were performed by a 
senior research fellow who had undergone standard and US-guided vascular access 
training prior to the study. An unbiased orthogonal subset of manual trials were 
then repeated by a clinical expert, with retrospective statistical analysis indicating 
equivalence in cannulation performance between the research and clinical 
operators (Supplementary Fig. 22). Operators were allowed five practice attempts 
on each tissue-mimicking model before data collection.

In vivo studies on rats. Thirteen WC male Sprague–Dawley rats and seven BC 
male Sentinel rats (weight 260.9 ± 75.3 g) were included in the in vivo study 
following approval by the Rutgers University Institutional Animal Care and Use 
Committee. The study was carried out over a four-month period with no more 
than eight repeated trials per animal. Each rat was anaesthetized by 5% isoflurane 
gas administered by inhalation and subsequently maintained under anaesthesia 
for up to 1 h by 2.5% isoflurane gas. Once anaesthetized, each animal was 
positioned on a raised platform mounted to the device that secures the tail. A water 
recirculating blanket was placed underneath to maintain blood flow reduction and 
prevent hypothermia. Before the procedure, the tail was cleaned with 70% ethanol 
and soaked in 40 °C water for 1 min to induce vasodilation. A tourniquet was 
applied 1 cm from the proximal end of the tail.

Two methods of NIR tail vessel imaging were compared (Fig. 6a). In the first 
method, the NIR LED light source was arranged ipsilateral to the CMOS cameras 
to provide reflectance-based illumination of the tail. In the second method, the 
light source was positioned contralateral to the cameras to allow transmittance 
imaging. Finally, US image qualities at two frequencies (18 and 32 MHz) were 
compared, with the higher-frequency imaging observed qualitatively to result in 
improved resolution of submillimetre vessels (Fig. 6b and Supplementary Fig. 21).

The randomized in vivo cannulations were carried out using transmittance 
NIR imaging at 757 and 914 nm followed by longitudinal and transverse duplex US 
imaging at 32 MHz. Cannulation sites were manually determined, and a spacing of 
at least 3 cm between cannulations was maintained along the vessel, starting from 
the distal end of the tail. For the robotic trials, the position of the segmented vessel 
closest in distance to the defined cannulation site was then used as the target for 
access. Cannulation success was defined by the visual observation of the needle tip 
within the vessel lumen on the US image and the presence of blood flash in the hub 
of the infusion cannula. In cases where blood flash was not observed, lumen access 
was confirmed by threading a sterile 0.1 mm-diameter wire filament to the tip of 
the needle and visualizing the distal end of the wire within the lumen. Successful 
cannulation was followed by collection of 250 µl of blood and infusion of 250 µl saline. 
We used 27 G needles (0.75 inch length) in all trials to allow cannulation of vessels 
approaching 0.5 mm diameter and to minimize potential vessel damage. All robotic 
cannulations were performed with an insertion angle of up to 30° and insertion speed 
of 10 mm s−1. All manual cannulations were performed by a senior research fellow 
with three months prior training in rodent and small animal venipuncture.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Test datasets for evaluating source code are available at https://github.com/alvchn/
nmi-vasc-robot. Public data used in the study are available in the SPLab Ultrasound 
Image Database (http://splab.cz/wp-content/uploads/2014/05/ARTERY_
TRANSVERSAL.zip and http://splab.cz/wp-content/uploads/2013/11/us_images.
zip), the PICMUS Database (https://www.creatis.insa-lyon.fr/Challenge/IEEE_
IUS_2016/download) and the SPLab Tecnocampus Hand Image Database  
(http://splab.cz/en/download/databaze/tecnocampus-hand-image-database).

Code availability
Source code are available from the Github repository: https://github.com/alvchn/
nmi-vasc-robot. Use of the code is subject to a limited right to use for academic, 
governmental or not-for-profit research. Use of the code for commercial or clinical 
purposes is prohibited in the absence of a Commercial License Agreement from 

Rutgers, The State University of New Jersey. References to open-source software 
used in the study are provided within the paper.
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