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The growing role of precision and personalized 
medicine for cancer treatment
Paulina Krzyszczyk1, Alison Acevedo1, Erika J. Davidoff 1, Lauren M. Timmins1, Ileana Marrero-Berrios1, 
Misaal Patel1, Corina White1, Christopher Lowe1, Joseph J. Sherba1, Clara Hartmanshenn2, Kate M. O’Neill1, 
Max L. Balter1, Zachary R. Fritz1, Ioannis P. Androulakis1,2, Rene S. Schloss1 & Martin L. Yarmush1,2

Cancer is a devastating disease that takes the lives of hundreds of thousands of people every year. Due to disease heterogeneity, 
standard treatments, such as chemotherapy or radiation, are effective in only a subset of the patient population. Tumors can have 
different underlying genetic causes and may express different proteins in one patient versus another. This inherent variability of 
cancer lends itself to the growing fi eld of precision and personalized medicine (PPM). There are many ongoing efforts to acquire 
PPM data in order to characterize molecular differences between tumors. Some PPM products are already available to link these 
differences to an effective drug. It is clear that PPM cancer treatments can result in immense patient benefi ts, and companies and 
regulatory agencies have begun to recognize this. However, broader changes to the healthcare and insurance systems must be ad-
dressed if PPM is to become part of standard cancer care.
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INTRODUCTION

The complexity of cancer and its treatment
Cancer is one of the leading causes of death in the United States. In 2018 
alone, there will be an estimated 1,735,350 new diagnoses and 609,640 
cancer-related deaths1. Much work is ongoing to better understand and 
treat this group of diseases. Th e general defi ning feature of cancer is ac-
cumulated cell mutation, which manifests as tumors with uncontrolled 
growth. However, cancer is a complex, extremely heterogeneous condi-
tion. Th ere are over 100 types of cancers, located in diff erent organs and 
subtissues and originating from diff erent cell types2. Some cancer types 
(e.g., colon, breast, and non-Hodgkin’s lymphoma) contain even more 
specifi c classifi cations based on their molecular subtypes3–6. Additionally, 
expression of markers within the same tumor can change depending on 
the specifi c location or stage of cancer. Despite this complexity and vari-
ability, most types of cancer are treated with the same generic therapies.

Th ere are four main types of standard cancer treatments: surgery, 
radiation therapy, chemotherapy, and immunotherapy7. Some individuals 
will only require one treatment, but most oft en, a combination of treat-
ments is used to tackle the resistant nature of cancer. Surgery can be used 
when there are solid tumors that have not metastasized and are located 
in accessible areas of the body; however, many cancers do metastasize, 
so more aggressive treatments, such as radiotherapy and chemotherapy, 
are needed. Th ese approaches involve high doses of radiation and drugs 

in order to kill cancer cells and shrink tumors and, unfortunately, oft en 
cause additional damage to healthy cells. A study performed in 2004 
estimated that the contribution of chemotherapy to overall survival in 
the United States was only 4.3%, due to chemotherapy drugs’ limited 
specifi city8. Despite this, chemotherapy has been the standard of care in 
treating many diff erent types of cancers, and oft entimes may be the only 
treatment that a patient receives. Th is low effi  cacy is not limited to only 
chemotherapy, but to other current cancer treatments as well — in fact, 
it is estimated that any particular class of cancer drugs is ineff ective in a 
startling 75% of patients9. Notably, the eff ectiveness of these treatments 
depends on many individual factors, such as the type, stage, and location 
of the cancer as well as the patient’s age and overall health. Th is suggests 
that several personal factors should be considered before selecting a 
cancer treatment.

Another class of cancer treatments that have paved the way to more 
specifi c and eff ective therapies is immunotherapy, which harnesses a 
patients’ own immune system to fi ght cancer. Immunotherapy treat-
ments include monoclonal antibodies (mAbs), checkpoint inhibitors, 
cytokines, vaccines, and adoptive cell transfer, most prominently in 
the form of hematopoietic stem cell transplants (HSCTs) and chimeric 
antigen receptor (CAR) T-cell therapies10. Adoption of immunotherapy 
has steered the fi eld of cancer treatment toward the concept of precision 
and personalized medicine (PPM), in which therapy selection is tailored 
to each individual.
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Over the past decade it has become increasingly clear that no two 
patients’ cancers are exactly the same, and hence, may have variable 
responses to generic treatments such as chemotherapy and radiation11. 
Th is traditional model for cancer therapy is overly simplifi ed; it results 
in ineff ective, expensive treatments and causes patients to suff er from 
unnecessary side eff ects. A more eff ective model, poised to change this 
“one size fi ts all” approach, is based on PPM12 (Fig. 1). Th is perspective 
fosters the development of specialized treatments for each specifi c subtype 
of cancer, based on the measurement and manipulation of key patient 
genetic and omic data (transcriptomics, metabolomics, proteomics, etc.). 
For example, Soda et al. identifi ed a mutation in the anaplastic lymphoma 
kinase (ALK) that drives tumor formation in about 5% of non-small-cell 
lung cancers13. Th is discovery led to the development of ALK blockers 
such as crizotinib and ceritinib, Food and Drug Administration (FDA) 
approved drugs given to patients who test positive for the ALK mutation. 
A similar example is the promising use of the poly ADP ribose polymerase 
inhibitor olaparib in the treatment of BRCA-mutant ovarian cancer14.

Th ere also exists a growing category of PPM products called compan-
ion diagnostics (CDx), which are molecular assays that measure levels 
of proteins, genes, or specifi c mutations to reveal a specifi c, effi  cacious 
therapy for an individual’s condition15. Some examples include Dako 
Denmark’s HERCEPTEST and HER2 FISH PharmDx Kit, which deter-
mine HER2 protein and gene overexpression in fi xed breast, metastatic 
gastric, or gastroesophageal junction adenocarcinoma tissues16. Another 

example, Myriad Genetic Labs’ BRACAnalysis CDx, detects and classifi es 
DNA variants in the protein coding region of the BRCA1/2 genes using 
patient whole blood samples17. Th ese CDx allow for the selection of a 
treatment that is more likely to be eff ective for each individual based 
on the specifi c characteristics that their cancer possesses. Th e FDA has 
shown support in the PPM approach with their approval of these and 
other technologies since 1998, when the drug trastuzumab was approved 
for the treatment of HER2 receptor positive breast cancer18. Furthermore, 
the enactment of the Precision Medicine Initiative in 2015 has also pushed 
the PPM fi eld forward, by requiring the FDA to develop new platforms 
to evaluate PPM diagnostics and therapies19.

It is clear that integrating a PPM perspective into cancer research 
and treatment could result in major improvements in fi ghting cancer, 
especially due to its complexity and interpatient variability. In the 
current state of science and medicine, this has already started to be 
recognized through PPM research, PPM products and support from the 
FDA; however, there are several broader, societal obstacles that must be 
addressed and overcome before PPM can become fully integrated into 
standardized care.

The PPM process and integration into cancer treatment
Th e fi eld of PPM is designed to develop therapies for a single subject 
or subject group based on data that captures current and past physical 
health and environmental exposure. Based on these data, patients are 

Figure 1 Traditional versus PPM model 
for cancer treatment. A comparison of 
the key differences in the traditional 
model of cancer treatment and the 
emerging precision and personalized 
medicine (PPM) model. Traditionally, 
cancer has been treated using general, 
“one size fi ts all” approaches such as 
chemotherapy, radiation, and surgical 
excision of tumors. These treatments 
vary widely in effi cacy across individuals 
and also often cause harm to healthy, 
noncancerous organs and tissues. The 
PPM approach is characterized by indi-
vidualized treatments tailored to specifi c 
tissues, gene mutations, and personal 
factors relevant to each unique case of 
cancer. Companion diagnostics (CDx) 
help identify which treatments will be 
most effective for a specific patient’s 
tumor, and novel cell therapies are used 
to target the cancer with minimal dam-
age to healthy tissues, making the PPM 
model more effective and safer.
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categorized into groups for diff erent, clinically relevant purposes. A 
few examples of the uses of PPM include determining genetic pre-
disposition to a disease, identifying patient groups for clinical trials, 
and identifying individuals that are more likely to respond well to a 
specifi c therapy.

Th e completion of the Human Genome Project (HGP) gave scientists 
the ability to read and interpret an individual’s genetic code and to 
identify genetic predispositions to certain diseases. Th is milestone event 
changed the perspective on health from reactive to preventative. Today, 
scientists are working toward obtaining a detailed understanding of the 
function of the body from multiple omics levels and characterizing how 

genetic predispositions are aff ected by environmental exposures. Taken 
together, all of this information will ultimately allow scientists and doctors 
to better predict how patients will respond to a certain treatment. As 
highly valuable tools that assist personalized therapies, CDx assay patients 
for genetic traits that identify whether the patient would respond to a 
particular treatment. Th is approach can have a major impact on the care 
of the patient. Th e revolution lies in the change from a clinician selecting 
a generic therapy that is more or less experimental for the patient, to one 
that eff ectively targets the disease with PPM.

Th is review comments on the fi elds of personalized medicine and 
precision medicine, taken together as PPM. Although today the terms are 

Figure 2 The PPM process: From data acquisition 
to integration in healthcare. A flowchart of the 
general process of PPM treatment, which serves 
as an outline for this article. First, a large volume 
of “omics” data is acquired from the patient and 
stored in one of several cloud-based databases. 
We discuss the various technologies that allow for 
omics data acquisition. Data processing algorithms 
identify the unique features of the patient’s cancer, 
and companion diagnostics (CDx) tools, which we 
discuss next, link these features to specifi c treat-
ments that will likely be the most effective at treating 
the cancer. We outline the development of several of 
these products, including targeted antibodies, cancer 
vaccines, and T-cell therapies. The regulation of new 
PPM treatments and products by the Food and Drug 
Administration (FDA) and Center for Medicare and 
Medicaid Services (CMS) is continually evolving; we 
discuss the landmark regulatory changes that have 
enabled approval of new technologies and consider 
the future of the regulatory landscape. Finally, we look 
at the economics and ethics of PPM, including how to 
reduce cost, who to hold responsible for payments, 
and concerns about accessibility and data security.
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oft en interchanged — they both refer to the use of unique characteristics 
from patients to select the best treatment — the fi eld was originally 
referred to as personalized medicine20. However, as it gained popularity 
and the term became more widely used in science, media, and society, it 
began to carry a misconception. Many people incorrectly assumed that 
due to the “personalized” nature, unique treatments were being developed 
for each individual. In order to clarify the actual goal of the fi eld, the 
scientifi c community, specifi cally the National Research Council, has 
pushed for the use of precision medicine to replace the misleading name of 
personalized medicine21. Still, personalized medicine continues to be more 
widely recognized by the general public. We consider both terms in the 
current review in order to be inclusive of both perspectives throughout 
recent history and to acknowledge the evolution of the terminology.

In this review, the current state of the fi eld of PPM in regards to 
cancer is presented in three categories, which are depicted in the fl owchart 
in Fig. 2. We begin by describing the methods of (1) Acquiring PPM 
Data. Here, the multiple omics techniques (genomics, transcriptomics, 
proteomics, and metabolomics) used to characterize an individual’s 
disease state are discussed. Th e understanding and application of these 
data as tools in clinical trial design and treatment selection are discussed 
in, (2) Developing a PPM Th erapy. Emerging cancer products, such as 
organoids, mAbs, cancer vaccines, and CAR T-cells are also presented 
from a PPM perspective. Also addressed are the evolving federal regula-
tions for PPM products, in order to ensure their safety and effi  cacy. In 
(3) Broader Consequences of PPM, the economic and ethical concerns of 
PPM are considered. Establishing PPM is complicated from an economic 
point-of-view, likely requiring alterations to the contemporary insurance-
payer system. Th e nature of the fi eld can also be daunting from an ethical 
perspective, requiring the establishment of suffi  cient protections to the 
privacy and health of targeted patients.

It is the opinion of this review that the fi eld of PPM is benefi cial to 
the patient and the scientifi c community, by stretching collaborations 
and expanding understanding of the biological complexity of cancer 
and its treatments. Th is, however, does not come without the broad 
challenges and adaptations that are associated with newly emerging 
fi elds, particularly from the standpoint of biotechnology companies and 
society as a whole.

ACQUIRING PPM DATA
Before a PPM treatment can be developed and used in patients, a specifi c 
gene or mutation must be correlated with a clinical outcome. Th is is a 
major undertaking; it can take years of research performed by many 
scientists to uncover a phenotype or polymorphism that is clinically 
meaningful. Furthermore, understanding which polymorphism leads 
to a positive versus negative treatment response in patients requires 
additional analysis. Th e fi rst step in this process toward understanding 
the genetic code is to sequence DNA from many individuals. With the 
advancement of sequencing technologies, this step is becoming easier. 
Th e major challenges lie in interpretation of these enormous data sets, 
which is where bioinformatics plays a major role.

Genomic sequencing technologies
Th e fi eld of PPM would not exist without the major accomplishment 
of sequencing the human genome. Th e HGP took 13 years to complete, 
from 1990 to 2003. Th is was a major undertaking by the International 
Human Genome Sequencing Consortium (IHGSC), consisting of over 
200 collaborating labs in 19 countries, discovering new information 
about the structure and organization of the genome22. It was discovered 
that there are approximately 20,500 genes within the human genome 
and that any two individuals share 99.99% of their genome, indicating 
that genetic individuality could be identifi ed within only the remaining 
0.01%. Furthermore, long repeat sequences were identifi ed within the 
genome, and diff erences in single bases (single nucleotide polymorphisms 
[SNPs]) held the potential to be unique disease indicators22. Th is initial 

information gathering was facilitated by two methods through the use 
of bacterial artifi cial chromosomes (BAC) and Sanger sequencing. BAC 
vectors facilitated the initial phase of genome sequencing, functioning 
to determine the chromosomal location of DNA fragments isolated 
from a sample22. In contrast, Sanger sequencing enabled the precise 
base-by-base identifi cation of a DNA fragment22. Although essential in 
early sequencing eff orts, these methods were expensive and ineffi  cient. 
As a result of several years of research and development to overcome 
these problems, Next Generation Sequencing Technologies (NGSTs)23 
have emerged. NGSTs expand upon the BAC and Sanger sequencing 
methods, providing cost-eff ective tools capable of high-dimensional and 
parallel sequencing23. Table 1 details several currently available NGSTs 
along with their advantages and disadvantages.

With today’s technology, the scientifi c community can sequence 
genetic information with relative ease. Current challenges involve corre-
lating genetic details with predisposition to disease. Similarly, the genome 
is not an exclusive variable in a patient’s state of health. Other omics levels, 
requiring other forms of technology beyond DNA sequencing, provide 
insight into a subject’s health via measurement of protein structure and 
function, epigenetic manifestations, the mechanisms of metabolism, and 
the concentration of metabolic intermediates24.

Transcriptomic, proteomic, and metabolomic techniques
While genomic data is critical to developing a comprehensive understand-
ing of disease progression and drug eff ects in physiological systems, bridg-
ing the gap from genotypic eff ect to phenotypic event is accomplished 
by characterizing intermediate omics levels, including the transcriptome, 
proteome, and metabolome.

Transcriptomics
Th e total mRNA within a subject or sample is defi ned as the transcrip-
tome25,26. Contemporary high-throughput sequencing techniques for 
collecting transcriptomic information include microarray and RNA 
sequencing (RNA-Seq) methods (Table 2). Microarray analysis identifi es 
mRNA expression by measuring the level of hybridization between a 
sample and complementary probes. Th e abundance of gene expression 
within a sample is indicated by the level of fl uorescence found within 
each well of the array corresponding to a particular probe25. Microar-
ray analysis is limited in that prior knowledge of the gene’s sequence is 
required to design probes25. Distinct from microarray analysis, RNA-Seq 
is useful for measuring mRNA expression level as well as discovering new 
sequences, as this process does not require probes or prior knowledge of 
the mRNA sequence of interest25,26. Th is method is analogous to Sanger 
sequencing, in that the mRNA sequence is determined by the one-by-one 
addition of fl uorescently-labeled nucleotide bases. Fluorescent images 
are captured during each iteration, and their analysis reveals the specifi c 
sequence, as well as its expression level26. Microarray analysis requires 
less labor preparing samples than does RNA-Seq25; however, RNA-Seq 
does not require prior knowledge of gene sequences and can process 
smaller quantities of samples25,26. Both methods have high throughput 
capabilities, though microarray currently possesses better cost-value25.

Contemporary drug development is enabled through genomic 
profi ling, generally incorporating either microarray analysis or RNA-Seq 
for transcriptomic profi ling. Both microarray and RNA-Seq analyses 
enable the characterization of disease phenotype and drug eff ect within 
a system (single-cell or larger), which provides invaluable information 
for the development of genome-specifi c therapies27. RNA-Seq appears 
advantageous for the discovery of novel genomic drug eff ects and disease 
phenotypes; however, microarray analyses are cheaper and have more 
standardized protocols25,27. In general, RNA-Seq is more advantageous 
for clinical investigations because it is capable of delivering a lower signal-
to-noise ratio than microarray results. Furthermore, RNA-Seq results 
can be acquired from smaller sample quantities compared to microarray 
methods — nanogram versus microgram masses, respectively25,27. It is 
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Table 1 Comparison of next generation sequencing technologies. A summary of next-generation sequencing technologies, which are used to collect genomics data. 
Diff erent clinical applications require technologies with diff erent advantages, so consideration of accuracy, cost, time, throughput, and ease of use is required before 
selecting a sequencing technology for clinical use.

Technology Description Applications
Run 

time175
Max. reads 
length175

Max. read 
per run175

Approx. 
costa Accuracy175 Advantage(s) Disadvantage(s)

Sanger 
Sequencing

First-generation 
sequencing technique, 
contemporarily 
useful for verifying 
NGS sequences, if 
needed. Foundation 
for current NGS 
techniques176

Applicable 
for small 
sequencing 
reads

20 min–
3 hr 400–900 bps 1,000 $5–20 99.99%

Accurate
Low read length
Shorter time

Low throughput
High cost per 
run

Illumina 
MiSeq

Instrument capable of 
sequencing 96 samples 
in single run. Detects 
fl uorescence emitted 
aft er synthesis of DNA 
strands with sample 
templates177,178

Small genome 
sequencing

Targeted gene, 
miRNA, and 
small RNA 
profi ling

16S metagenomic 
sequencing

4–55 hr 2 × 150 bps 25 million $700–
1,500 98% High throughput High read length

Illumina 
NextSeq

Fluorescence-based 
multiplexed 
sequencing 
instruments 
tailored for specifi c 
applications179

Nextseq: Small 
whole-genome 
for microbe 
or virus; 
exome, and 
transcriptome 
sequencing

HiSeq: Exome 
and whole-
transcriptome 
sequencing

NovaSeq: Large 
whole-genome 
sequencing for 
animals and 
plants; exome 
and whole-
transcriptome 
sequencing; 
methylation 
sequencing

12–30 hr 2 × 150 bps 400 million $1,000–
5,000 98% High throughput High read length

Illumina 
HiSeq

1 hr–
6 days 2 × 150 bps 5 billion $1,000–

4,000 98% High throughput High read length

Illumina 
NovaSeq 6000 16–44 hr 2 × 150 bps 20 billion $2,000–

5,000 98% High throughput High read length

SOLiD
Highly accurate 

fl uorescence-based 
method180

Small genome 
sequencing

7–14 
days 2 × 50 bps 1.5 billion $5,000–

10,000 99.94% Accurate High read length

Ion Torrent

System detects pH 
change resulting from 
H+ release in solution 
of growing DNA chain 
corresponding to 
sample template23

Small genome 
sequencing 2 hr 200 bps 15 million $200–500 99%

More stable 
with longer 
reads

High read length

SMRT from 
Pacifi c 
Bioscience

Fluorescence-based 
multiplexed method 
noteworthy for its use 
of the world’s smallest 
light detection 
volume for the site 
of sequencing. Th is 
minimizes noise 
of fl uorescence 
readings181

Small genome 
sequencing 4–6 hr 1,300 bps 89 million $300–500 97%

Does not 
require PCR 
amplifi cation 
during sample 
prep

Low throughput

a Cost — subject to change based on the facility and the discount.
Abbreviations: bps: base pairs, NGS: next generation sequencing, PCR: polymerase chain reaction.
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predicted that as NGSTs become more integrated in clinical diagnos-
tics, RNA-Seq protocols will become more standardized and replace 
microarray diagnostics27. Currently, both diagnostic tools are used to 
generate transcriptomic results depending on fi nancial and experimental 
necessity27.

Proteomics
Proteomics refers to identifying and cataloguing all proteins, and the 
interactions between these proteins, in a cellular system. Proteomic 
measurements yield information about protein structure, concentrations 
and cellular localizations, protein–protein interactions, and protein 
synthesis and degradation rates. Th is information is used to understand 
how the proteome changes during diff erent biological processes and for 
identifying patterns of disease28. For PPM, data on post-transcriptional 
modifi cations, or abundance of proteins in a tissue, could be important for 
disease diagnosis, progression and treatment. Over the past two decades, 
mass spectrometry (MS) has been the main tool used for collecting 
proteomic data, particularly to measure protein expression, identify sites 
of protein modifi cation, and investigate protein–protein interactions29.

Two major strategies have evolved to generate proteomic data: 
bottom-up and top-down proteomics. Th ese methods and other subcat-
egories are summarized in Table 3. Th e bottom-up strategy, also known 
as “shotgun proteomics,” uses MS to analyze large mixed protein samples 
and determine their composition. Generally, the bottom-up strategy is 
useful for analyzing an unknown mixture of proteins but is imprecise for 
several reasons: information about a particular protein can be lost when 
it is fragmented, MS data can be easily misinterpreted, and only proteins 
with high concentrations in the mixture appear on the MS output. Still, 
the shotgun approach is useful in PPM as it enables the generation of a 
unique proteomic “fi ngerprint” for each patient. Th is can result in the 
identifi cation of key protein biomarkers for particular disease states30. 
Recent labeling technologies have enabled simultaneous multiple-sample 
shotgun analyses (bottom-up labeling), which additionally facilitates 
examination of proteomic changes due to biological perturbations.

Th e top-down strategy is a newer approach and involves MS analysis 
of whole proteins, aft er which a particular protein of interest can be 
isolated, fragmented, and further analyzed. Top-down proteomics is a 
critical tool for studying post-translational modifi cations of proteins, 

Table 2 Overview of transcriptome assessment tools. Th e transcriptome is the set of RNA molecules expressed from a patient’s cancerous cells. Microarray analysis and 
RNA-Seq are the two major ways to collect transcriptomics data. Generally, RNA-Seq is performed in exploratory studies, which attempt to identify RNA sequences 
linked to cancer phenotypes. Once these sequences are known, microarray analysis is performed on patient samples to determine which sequences are present.

Strategy Purpose Data collection Data analysis

Microarray analysis

Analysis of high-throughput RNA 
samples for expression abundance. 
Requires prior knowledge of sought 
RNA sequences25,26

RNA is reverse-transcribed to double stranded 
cDNA which is then fragmented and fl uorescently 
labeled26. Probes are short oligonucleotides that 
hybridize to fl uorescent cDNA fragments25

Fluorescence intensity indicates the 
abundance of gene expression. 
Computational image analysis 
allows for quantifi cation25

 RNA-Seq

Analysis of high-throughput RNA 
samples for expression abundance 
and sequence discovery. Sequence 
discovery tool — does not require 
prior knowledge of RNA sequence26

RNA is fragmented then reverse-transcribed to ds 
cDNA. cDNA is amplifi ed via PCR to yield the RNA-
Seq library, used as a reference genome. Iteratively, 
fl uorescently labeled nucleotide bases are washed 
over the library, binding to nucleotides in order of 
their sequence. Fluorescence is captured in each 
iteration, preserving the order of the sequence25,26

Fluorescence images preserve 
sequence order and abundance of 
mRNA sequences. Indicates mRNA 
expression abundance in sample. 
Computational image analysis 
allows for quantifi cation25,26

Abbreviations: PCR: polymerase chain reaction, RNA-Seq: RNA sequencing.

Table 3 Overview of proteomics strategies and workfl ows. A summary of strategies for obtaining proteomic data — information on the protein species present in a 
patient’s cancerous tissues. Typically, bottom-up or “shotgun” approaches are used in exploratory studies to identify proteins that are linked to particular cancer phe-
notypes. Top-down and middle-down strategies are more useful for analyzing samples from patients. In characterizing cancer for PPM treatments, identifi cation of 
post-translational modifi cations and other high-level protein features is especially important, as these features are valuable targets for PPM therapies.

Strategy Purpose Data collection Data analysis

Bottom-up (shotgun) 
proteomics

Analysis of large mixed protein 
samples and determination of their 
composition, e.g., in biomarker 
discovery studies

Proteins are broken into peptides through trypsin 
proteolysis and the peptides are separated based 
on size or charge in a mass spectrometer182

Mass spectra are compared to a 
database like Andromeda183 
or PeptideAtlas184 for protein 
identifi cation

Bottom-up proteomics 
with labeling

Enables simultaneous multiple-sample 
analysis of proteomic changes, e.g., 
changes due to biological perturbations

Isotopes of C, H, N, and O added to peptide 
samples via methods such as SILAC, ICAT, 
and iTRAQ185, and peptides are analyzed via 
tandem MS (MS/MS)

Relative peptide abundances are 
measured by comparing intensities 
of the diff erent isotope species in 
the MS/MS data

Top-down proteomics
Analysis of whole proteins, with 

special interest in post-translational 
modifi cations

Proteins are ionized and converted to gas stage 
using techniques such as MALDI and ESI186, 
then separated using LC and analyzed via MS

Mass spectra are compared to protein 
databases, such as ProSight PTM 
which off ers a free Windows app for 
sequence identifi cation187

Middle-down 
proteomics

Produces less complex solutions for easier 
protein identifi cation and analysis of 
high-level protein features188

Proteins are digested only enough to produce large 
peptide fragments, which are analyzed via MS

MS analysis identifi es both protein 
composition and the presence of 
high-level features such as protein 
isoforms and modifi cations32

Abbreviations: ESI: electrospray ionization, ICAT: isotope-coded affi  nity tags, iTRAQ: isobaric tags for relative and absolute quantitation, LC: liquid chromatography, MALDI: matrix- assisted 
laser desorption/ionization, MS: mass spectrometry, PPM: precision and personalized medicine, SILAC: stable isotope labeling with amino acids in cell culture.
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which helps elucidate protein function. Post-translational modifi cations 
are oft en linked to disease states, particularly in cancer, diabetes, infectious 
and neurodegenerative diseases, and blood disorders31. In the context 
of PPM, identifying key post-translational modifi cations in individual 
patients could prove a potent diagnostic tool. Additionally, analyzing 
temporal expression of a particular protein could provide clinicians 
with detailed pharmacodynamic information about therapeutic drugs30.

A hybrid strategy, termed “middle-down proteomics,” has emerged in 
recent years as an attempt to optimize the advantages of both techniques. 
Like bottom-down proteomics, middle-down proteomics uses protein di-
gestion but seeks to produce signifi cantly larger peptides, thus producing 
less complex and ambiguous protein solutions and also enabling analysis 
of high-level characteristics30. Middle-down proteomics has already been 
established as the best method for studying histone proteins32. It also 
shows promise for PPM applications as it allows for both quantifi cation of 
a large number of potential protein biomarkers and analysis of individual 
protein mutations and modifi cations.

Metabolomics
Metabolites are the small-molecule intermediate products in meta-
bolic reactions, and metabolomics refers to their identification and 
analysis. Metabolites are useful because they reflect both genetic and 
environmental influences, and a complete metabolic analysis is often 
described as a “functional readout” of the current state of the organic 
system33. In a PPM context, metabolomic data could offer insight into 
an individual’s unique physical reaction to a drug, an application that is 
also referred to as metabolomics34,35. At present, metabolomic studies 
of biofluids and tissues have contributed to the development of PPM 
approaches by identifying biomarkers for disease states, which have 
the potential to assist clinicians in diagnosis and early treatment36. 
One of metabolomics’ key clinical advantages is that measurements 
can be made noninvasively, since metabolites, unlike most proteins, 
diffuse throughout the body and appear in easily accessible biofluids, 
like blood and urine33. In the early days of metabolomics studies, 
nuclear magnetic resonance (NMR) spectroscopy was often used 
to identify metabolites, but the past decade has seen a major shift 
toward MS, which offers higher resolution and sensitivity to small 
concentrations37.

Like in proteomics, metabolomic strategies (Table 4) can be broadly 
classifi ed into two categories: targeted and untargeted approaches. 
Th e untargeted, or global, approach has been used to characterize the 
metabolomic fi ngerprint in a variety of diseases, including Parkinson’s 
disease, Crohn’s disease, diabetes, liver disease, and multiple forms 
of cancer33,38. Due to the wide range of metabolite concentrations 
in a standard sample — estimated to cover 7–9 orders of magnitude, 
from pmol to mmol — there is no single technology that can provide 
a complete fi ngerprint of all metabolites39. However, improvements 
in liquid and gas chromatography technologies have enabled cleaner 
metabolite separations, while advancements in MS resolution have 

allowed for the detection of large numbers of distinct peaks at multiple 
concentration levels40. Accurately identifying the thousands of peaks 
generated by an untargeted experiment continues to be the greatest 
challenge associated with this technique, and high false positive rates 
pose issues for clinical adaptation in PPM38,41. Nevertheless, untargeted 
metabolomics is a critical technique for generating hypotheses about 
potential biomarkers.

Targeted metabolomics aims to quantify known metabolites in a 
particular sample and represents the bulk of metabolomics research in 
PPM. Th e targeted approach enables clinicians to measure samples of 
a patient’s biofl uids for anomalous metabolite levels that could lead to 
a diagnosis. Alternatively, clinicians can use this technique to monitor 
metabolic responses following administration of a drug, in order to 
determine an exact dosage regimen. However, in order for this technique 
to have clinical relevance, identifi cation and rigorous confi rmation of 
appropriate metabolic biomarkers must be completed. Metabolomics is 
a promising tool for the advancement of PPM, especially when used in 
conjunction with other omics data. Th is is a venture that requires special-
ized bioinformatics tools. Th e fi eld is beginning to see the emergence of 
robust tools for omics integration — including Metabox, a free R-based 
application that combines metabolomic, proteomic, and transcriptomic 
data42, and MKGI models, which use neural networks to identify interac-
tions between diff erent omics data sets43. Th ese are just a few examples 
of the many integrative tools available44, which are key to bringing omics 
approaches to the clinic.

Physiological and lifestyle data
A patient’s physiological and lifestyle factors are also important, as one’s 
habits infl uence disease progression and response to treatment45. Many 
clinical studies have demonstrated the impact of physiology on the 
absorption, distribution, metabolism, and elimination (ADME) of drugs 
in the body46–48. Physiological diff erences due to age, sex, ethnicity, and 
stage of disease have been shown to aff ect pharmacokinetic response to 
drugs as well as increase the variation in responses45. For example, drug 
clearance tends to be lower in geriatric patients compared to young adults. 
Th is can lead to signifi cant dissimilarities in drug elimination behavior, 
thus resulting in diff erent pharmacokinetic responses, quantifi ed in the 
form of bioavailability49. Similarly, lifestyle and environmental condi-
tions have long been shown to have a strong eff ect on disease50. Healthy 
diets and moderate exercise are generally affi  liated with lower risks for 
disease, whereas lifestyle choices such as excessive smoking and alcohol 
consumption have been linked with cancer and other diseases51.

One of the challenges with advancing PPM based on physiological 
information is associated with the lack of available anatomical data char-
acterizing specifi c diff erences between broader subpopulations of patients 
such as age, gender, ethnicity, and disease. Th is, in part, is due to the high 
variations that exist even within these subpopulations52. In contrast, 
the availability of data for PPM based on omics is plentiful. Improved 
technologies have enabled the availability of tremendous volumes of data, 

Table 4 Overview of metabolomics strategies and workfl ows. Like the other omics data collection approaches, metabolomics data collection can be summarized with 
two main strategies, untargeted and targeted. Th e untargeted approach is used in exploratory studies to link metabolite profi les to cancer phenotypes, and targeted 
metabolomics is used to analyze samples from patients to determine which metabolites are present. Metabolomics is a relatively new fi eld and its application in PPM 
is just beginning.

Strategy Purpose Data collection Data analysis

Untargeted (global) 
metabolomics

Analysis of large mixed metabolite 
samples and determination of their 
composition, e.g., in biomarker 
discovery studies

Metabolites are isolated using LC or techniques, such 
as solvent-dependent precipitation189, polarity 
and ionization fi ltration190, and quenching with 
methanol191, then quantifi ed using MS/MS

Mass spectra are compared with MS/
MS databases, which include Scripps’ 
METLIN192, the Human Metabolome 
Database193, and MassBank194

Targeted 
metabolomics

Quantify known metabolites in a 
particular sample, e.g., to analyze a 
patient’s condition

Metabolites of interest are separated from the 
sample using a variety of common separation 
techniques195, and measured using MS/MS

Mass spectra are compared with calibration 
curves based on measuring known 
amounts of the metabolites of interest

Abbreviations: LC: liquid chromatography, MS: mass spectrometry, PPM: precision and personalized medicine.
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but the information they provide is complex53. Th e challenge there lies 
in properly storing, analyzing, interpreting, and utilizing these data so 
that they can reach their full, clinical potential.

Data storage
While omics data off er great potential for understanding disease, their 
acquisition also presents a major challenge: storage. Th e National Cancer 
Institute’s Cancer Genome Atlas contains 2.5 petabytes of data, which is 
equivalent to over 530,000 DVDs54. Additionally, by 2013, over 20 peta-
bytes of data related to genes, proteins, and small molecules were recorded 
by the European Bioinformatics Institute55. While the generation of such 
large volumes of data is common practice for fi elds like high-energy 
physics and astronomy, it is a relatively uncharted territory for biology55.

Eff ective use of omics data relies on appropriate data storage and 
accessibility for researchers and clinicians. Companies such as Amazon 
supply cloud computing resources that have improved data storage 
capabilities for PPM. Th e Amazon Web Services provides a cloud-based 
data storing platform used by organizations like the National Institute of 
Health’s Human Microbiome Project (HMP), the INOVA Translational 
Medicine Institute (ITMI), and GenomeNext56. Highly curated databases 
are essential to improving data analysis for PPM57. Database developers 
must provide user-friendly interfaces in order to effi  ciently provide the 
full availability of data to researchers. Databases must also be refi ned 
in an iterative manner as new information becomes available to ensure 
recent and updated content.

A variety of massive databases exist for oncology data, notably the 
International Cancer Genome Consortium (ICGC) and Th e Cancer 
Genome Atlas (TCGA; run by the National Cancer Institute and the 
National Human Genome Research Institute)58. Information within 
ICGC’s data portal focuses on 50 tumor types and characterizes them 
on genomic, transcriptomic, and epigenomic levels across genders, 
mutations, tumor stage, and more. Th e TCGA portal provides detailed 
information on genetic mutations and gene expression in 11 types of 
cancer tissues, in a total of 33 subtypes of cancer54. Analysis is performed 
on high quality tumor samples and matched normal tissue samples, on 
a high quantity of patients58. Also worth mentioning is the Catalogue 
of Somatic Mutations in Cancer (COSMIC), which allows researchers 
to browse the database according to cancer types, tissue, and genes. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is another widely 
used genomic resource that links genomic data to systemic functions 
and reports most genes in the context of both function and molecular 
pathways59. Th ese are just a few of many available cancer databases that 
aid in PPM research eff orts58. Th rough eff ective use of omics methods 
and databases, key genes, metabolites, and proteins can be linked to a 
disease state. Th erapies can then be identifi ed or developed to eff ectively 
treat cancers on a personalized level.

DEVELOPING A PPM THERAPY
Once biological data have been acquired and stored, they must be ana-
lyzed, with the goal of identifying biomarkers, mutations, or pathways 
relevant to disease or treatment outcome. Th e fi eld of systems biology 
aids in these eff orts by analyzing data from preclinical and clinical stud-
ies. Statistical and modeling techniques are used to identify and assess 
mechanistic relationships within biochemical systems. Th is analysis is 
used to develop predictive tools that replicate biological systems in order 
to characterize their behavior and response in the context of disease and 
drug development. Th is is particularly relevant to forthcoming cancer 
treatments, as approximately 73% of oncology drugs in development 
are personalized medicines9. PPM therapies that are currently being 
developed include cancer vaccines, mAbs, and CAR T-cells. Organoids 
are being used as in vitro models to understand tumor heterogeneity and 
the variability of patient response to cancer treatments. As these PPM 
products and services emerge, it is pertinent that companies are aware 

of the evolving regulatory landscape for the PPM fi eld and continuously 
reference updated guidance documents.

Linking omics data to treatment
A major challenge in PPM lies in establishing the relationship between 
biological data, disease, and clinical translation: how can we interpret 
the data collected to make meaningful medical decisions? “Big Data,” in 
reference to the medical industry, refers to the greater collection of medi-
cal data across thousands of patients, involving the tracking of various 
medical indicators and biomarkers (primarily clinical and omics data). 
High-throughput data collection enables researchers to screen tissues for 
thousands of molecular targets, eff ectively capturing the response of a 
complex system over time. Within the fi eld of systems biology, reconcili-
ation of these omics components enables the construction of predictive 
models of human physiology used in experimental design and clinical 
trial development60–63.

In order to correlate observations with biological events and pheno-
types, systems biologists and bioinformatic scientists employ techniques 
to identify statistically signifi cant trends64. Th ese include multivariate 
decomposition techniques, predictive modeling and optimization tech-
niques, and other statistics-based tools. Statistically interpreting trends 
from Big Data is a discipline unto itself and is necessary for predictive 
modeling and clinical decision support65.

It is important to remember that Big Data is a network of infor-
mation that is both useful and deafening — analysts of which suff er 
the burdens of “missing values, curse of dimensionality, and bias 
control”65. Big Data is not an easy-to-use information source from 
which trends connecting diseases to patient characteristics can be 
simply identifi ed. Instead, Big Data is a multidimensional network 
containing medical information from thousands of patients, all of 
whom are infl uenced by diff erent environments, have unique genomes 
and epigenomes, and who are analyzed by diff erent physicians prone 
to unique biases and varied techniques. Furthermore, patient screen-
ing, sample collection and analysis, and even physical measurements 
are all subject to bias. All of these considerations contribute to the 
complexity of the PPM fi eld.

Omics tests and clinical trials
Omics data is essential to the development of targeted therapies as well as 
patient stratifi cation, notably within preclinical experiments and clinical 
trials. Le Tourneau et al. reviews specifi cations for establishing PPM clini-
cal trials — those that select patients likely to respond to the experimental 
treatment, as determined by molecular profi ling of tumors66. Th is fi eld 
of study, called pharmacogenomics, uses experimental and quantitative 
sciences to analyze the infl uence of genomics on drug eff ects67. Diseases 
and drug eff ects are conventionally correlated to macro data, such as 
age, weight, and gender. Improvements in high-throughput screening 
technology and increasing reliance on computational tools have enabled 
the development of the pharmacogenomics fi eld, which correlates drug 
eff ects with omics data while revealing gaps in which drug targeting can 
be made more specifi c67. Such pharmacogenomic analysis can ultimately 
identify patient populations likely to be responsive to targeted therapies, 
which is a primary goal of PPM.

To get from omics data to patient stratifi cation in clinical trials, 
predictive computational models must be used. Here, each molecular 
target from the omics measurements is a variable in a complex system 
that represents the tissue68–70. Statistical techniques are applied in order 
to segregate noise from usable information and ultimately reveal physi-
ological trends based off  of key molecular markers. Th e resulting in silico 
model is further modifi ed by data-driven investigations whose results are 
analyzed and fi tted to mathematical models. Validation of these models 
is accomplished with additional training data. Once verifi ed, the model 
is predictive and can be used in further experimental design or clinical 
trial guidance (Fig. 3)60.
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Th e combination of omics assays and a specifi c computational model 
(omics predictor) is defi ned as an omics test63. Th ere are two types of 
omics tests: prognostic test, which predicts a clinical outcome in the 
form of a measurement; and a therapy guiding test, which identifi es 
subgroups of patients that are unique in their response to a particular 
therapy63. Notably within the realm of cancer research, omics tests are 
applied in identifying and validating biomarkers for disease indications61. 
Establishing the validity of the biomarker for a disease indication requires 
validation using an omics test, and this omics test (sample preparation, 
performing the sequencing assay, computational pipeline for assessing 
the sequence read) also requires validation61. Clinical viability and utility 
of the biomarker and omics test must be established, meaning that the 
use of this biomarker should result in the end-point of progression-free 
survival61,71.

Clinical trials examining the efficacy and utility of validating 
biomarkers with omics tests are not yet commonly successful (see 
the National Academy of Sciences report Committee on the review of 
omics-based tests for predicting patient outcomes in clinical trials for 
an extensive review71). In short, putative biomarker identifi cation is 
expedited with omics analyses; however, establishing clinical validity 
and clinical utility is more diffi  cult. A contemporary primary research 
focus is the eff ort to establish safe and eff ective use of omics tests in 
clinical trials61–63. More specifi cally, the development of novel and 
robust statistical analysis methods must undergo the same rigorous 
development as bioassays63. To enable this, the Institute of Medicine 
established guidelines for the use of omics analyses in clinical trials 
in 2013, which the U.S. National Cancer Institute (NCI) adheres to 
when reviewing proposals for studies involving omics tests61,62. In 
addition to providing recommendations for application of omics-based 
tests in clinical trials, these guidelines require that agencies receive 
FDA approval for all “sequencing assays and their associated analysis 

soft ware tools as potential investigational devices . . . [and provide] 
public availability and transparency of raw data as a means to enable 
the external validation of omics-based trials”61,62. McShane et al. of 
the NCI also indicates that as researcher teams with greater variety 
of expertise (laboratory, computational, bioinformatics, and clinical) 
develop, omics tests will become more robust63. Th ese institutes and 
contemporary researchers expect an increase in the number of suc-
cessful clinical trials incorporating omics tests as expertise expands 
and rigor improves.

Clinical outlook for PPM cancer products
Advancements in omics technologies have led to drug discovery ap-
proaches for a variety of PPM cancer products72. Detection methods 
for circulating tumor cells (CTCs) and DNA are promising not only for 
early diagnosis, but also for individualized patient risk monitoring and 
identifi cation of eff ective personalized treatments. Another approach 
has focused on recapitulating individual tumors in vitro, in order to 
determine the safest and most eff ective treatment before administra-
tion to a patient. Several other therapies under development harness 
the unique power and specifi city of the immune system to combat 
cancers. Over a century of work has focused on this and has evolved 
into a distinct discipline called immunoengineering. Th e ultimate goal 
of this fi eld is to tailor an increasingly specifi c and potent immune 
response, which can result in a powerful, eff ective, and personalized 
cancer treatment73.

CTCs and DNA for early cancer detection
Two types of oncological biomarkers, CTCs and circulating tumor DNA 
(ctDNA), have emerged as the face of the “liquid biopsy” techniques 
focused on noninvasive cancer diagnostics. Research supporting the 
notion that tumors shed both types of biomarkers into the bloodstream 
early on in cancer progression has meant that much focus has been placed 
on their applications for early detection and screening74–76. As research 
continues and technology improves, CTCs and ctDNA are also likely to 
prove useful in risk stratifi cation, disease monitoring, and personalized 
treatment selection.

Th e biggest challenge in implementing CTC detection techniques is 
the rarity of these biomarkers: estimates place CTC frequency at one cell 
per 106–107 leukocytes77. Th us, CTC detection techniques require some 
form of sample enrichment or isolation step, such as immunoaffi  nity/
antibody targeting of cell surface markers, size exclusion methods, or 
separation on the basis of electrical properties. Th ese sample preparation 
steps are not without their own issues: CTC viability can be negatively 
aff ected by these processes, the heterogeneity inherent to CTCs means 
not all cells may be detected, and the lack of standardized protocols has 
resulted in signifi cant variability in results between techniques, operators, 
and laboratories77. However, once captured, CTCs can provide a wealth 
of omics information through single-cell next-generation sequencing 
(NGS), migration assays, RNA-Seq, and EPISPOT immunoassays77–79. 
Perhaps the most intriguing potential applications of CTCs are personal-
ized functional assays using patient CTC xenograft s in mice or in vitro 
cultures80. Such an assay has already been used to assess the effi  cacy of 
drugs in prostate cancer patients, with assay results corresponding well 
with patient drug resistance status81.

Unlike CTCs, ctDNA does not require specialized sample preparation 
steps for detection and can oft en be detected in samples in which CTCs are 
absent79,82. ctDNA is likely released by apoptotic or necrotic cells within a 
tumor, or by the destruction of CTCs via apoptosis, the immune system, 
or anoikis77,82,83. Like CTCs, increased levels of ctDNA are generally 
associated with later stage disease or disease recurrence aft er treatment. 
Th e two primary types of information that can be gleaned from ctDNA are 
mutation status and methylation status, though a limited degree of copy 
number variation analysis may also be possible. ctDNA mutations can be 
assessed by a variety of techniques including allele-specifi c polymerase 

 Figure 3 Predictive model development from large-scale omics data. An 
overview of the process for development of predictive models. Turning 
gigabytes of patient data into relevant clinical information requires a Big 
Data approach — specifi cally, predictive algorithms that are refi ned and 
validated with results from data-driven investigations, including tradi-
tional animal model studies and clinical trials. Adapted by permission 
from [RightsLink Permissions Springer]: [Springer Nature] [NATURE 
BIOTECHNOLOGY] Butcher et al.60, [COPYRIGHT] (2004).
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chain reaction (PCR), digital PCR, and tagged-amplicon deep sequencing 
(TAm-Seq)82. ctDNA mutation status could play a key role in monitoring 
disease progression during treatment and checking for the presence of 
drug-resistant subclones74,76. Methylation status is typically assessed 
with methylation specifi c PCR and can be used to reliably distinguish 
ctDNA from nontumor derived cell-free DNA. Major challenges that 
ctDNA diagnostics face include lack of standardization (such as how 
many mutations constitute a “positive” result when used for screening), 
potentially confounding mutations due to clonal expansion of benign 
cells, and diffi  culty in establishing personalized assays for the general 
population, that is, those without an established history or risk of cancer76.

Organoids
One approach currently under development for personalized treatment 
of cancers is patient-derived tumor organoids, which serve as in vitro 
tumor models and predictors of drug responses84. Traditional approaches 
to cancer research and therapies involve the use of in vitro cancer cell 
lines, patient-derived xenografts, and 3D culture models. These are 
limited by their inability to accurately correlate an individual tumor’s 
response to a treatment due to the diversity and heterogeneity of the 
tumor microenvironment. Organoids off er a more accurate representa-
tion of this dynamic niche and there is evidence that the genomic and 
functional resemblances between patient-derived tumor organoids 
and their original specimens can be nearly identical85–88. Th e original 
success of tumor organoid cultures came from Weeber and colleagues, 
who successfully reported 90% preservation of somatic mutations and 
DNA copy number profile between the developed tumor organoids 
and patient original biopsies. Th is was achieved across a total of 1,977 
cancer-related genes from 14 patients with metastatic colorectal cancer85. 
Other positive developments in the use of these organoid models were 
reported by van de Wetering et al.86 Th e group successfully established 
a biobank of 20 colorectal carcinoma (CRC) derived tumor organoid 
cultures. Each culture represented a major CRC mutation subtype that 
was confi rmed by whole-exome sequencing analysis. Th is allowed for a 
more accurate detection of gene–drug associations for each individualized 
subtype of CRC. Another promising study conducted an examination 
of drug sensitivities of tumor-derived organoids against a library of 63 
drugs in 232 treatment regimens89. Tumors resected from 14 patients 
with refractory advanced cancers were propagated in mice and treated. 
Researchers were successfully able to identify an eff ective treatment for 
12 of the 13 individual patients in the xenograft  model. Th erefore, 11 
of the 12 patients received their prospectively guided treatments, with 
one patient having died before treatment. Th is data supports the use of 
personalized xenograft  models for guided treatment platforms. Tumor-
derived organoids provide a means for an accurate representation of 
gene–drug association on an individual basis, with the ease-of-use of 
an in vitro model. Hence, organoids hold immense potential to play 
signifi cant roles in the development of PPM cancer therapies.

Targeted mAbs for cancer therapy
Out of the many molecular-based techniques (e.g., small molecules, 
mAbs, and vaccines), mAbs have been very promising for cancer thera-
peutics due to their low cytotoxicity, high specifi city, and scalability90–92. 
mAbs are Y-shaped proteins, produced either synthetically or by B 
lymphocytes, that have the ability to bind to a specifi c molecular target. 
mAbs are one of the fastest growing immunotherapies; there are over 22 
FDA approved mAbs-based drugs for oncology.

In contrast to traditional therapies (e.g., surgery, radiotherapy, and/
or chemotherapy), therapies based on mAbs are targeted to specifi c 
molecular markers that a particular tumor expresses, and are therefore 
likely to be more eff ective. For instance, human epidermal growth factor 
receptor 2 (HER2) positive breast cancers result in better clinical benefi ts 
from HER2-targeted mAbs (e.g., trastuzumab and pertuzumab) than 

mAbs that target HER2 negative breast cancer markers (e.g., everoli-
mus)93. Additionally, epidermal growth factor receptor (EGFR) mAbs 
are commonly used for treatments of KRAS wild-type colorectal tumors, 
but nearly half of treated patients have not shown any clinical benefi ts94. 
Interestingly, under some conditions, tumors even continue to mutate and 
develop primary resistance against the targeted molecule95. Ultimately, 
the choice of the mAb (or the combination of mAbs) will oft en be defi ned 
by the cancer type, cancer subtype, and overall effi  cacy and side eff ects 
from other clinical and preliminary studies.

Recent advances in NGSTs at the single-cell level have provided 
researchers with more precise information about novel drug targets. Th is 
work has improved mAbs that target specifi c antigens on cancer cells 
and resulted in a more personalized approach96–99. Merck’s pembroli-
zumab (Keytruda®) became the fi rst drug to target a genetic signature 
(biomarker PD-L1 expressed in 50% of the non-small cell lung cancer) 
rather than a disease100. In a Phase III clinical trial, treating patients with 
pembrolizumab, combined with a fi rst line chemotherapy drug, resulted 
in a 36% higher response rate and lower side eff ects compared to treating 
patients with only chemotherapy101. Recently, mAbs in combination 
with other mAbs or chemotherapy have entered mainstream targeted 
cancer therapy. In addition to cancer, mAb therapies are also used 
to treat autoimmune diseases, infection, and hematological diseases. 
With increasing demand for PPM, current projections reveal that the 
global mAb therapy market is projected to grow to approximately $1.5 
trillion by 2021 and would account for about 20% of biopharmaceutical 
market share102.

Immune checkpoint inhibitors
 A promising advancement in cancer treatment is the development of 
antibodies capable of blocking coinhibitory immune cell receptors, or 
“immune checkpoints” — T-cell surface receptors that, when activated 
by particular ligands, reduce the T-cell’s cytotoxic immune response. 
Tumor cells tend to overexpress the ligands that activate these inhibitory 
receptors, thereby evading the T-cell immune response and proliferat-
ing freely103. Th ough over two dozen diff erent costimulatory receptors 
have been identifi ed104, two — CTLA-4 and programmed cell death 1 
(PD-1) — have been the focus for antibody-based immune checkpoint 
blockade (ICB) treatments, and six such drugs have been approved by 
the FDA105. CTLA-4 was the fi rst identifi ed negative regulator of T-cell 
activity106; when activated, it delivers inhibitory signals blocking T-cell 
proliferation and secretion of T-cell maturation agent IL-2107. The 
CTLA-4 inhibitor ipilimumab became the fi rst FDA-approved ICB drug 
in 2011 aft er a clinical trial demonstrated its benefi cial impact on survival 
rates in stage III and IV melanoma patients108. PD-1 was identifi ed as 
a coinhibitory T-cell receptor in 1999109 and, unlike CTLA-4, represses 
T-cell activity primarily by promoting T-cell exhaustion110. Th e fi rst 
PD-1 targeting ICB drug, nivolumab, was approved by the FDA in 2014, 
following favorable outcomes compared to chemotherapy in a clinical 
study administering nivolumab to patients whose melanoma progressed 
after ipilimumab treatment111. Since then, nivolumab has received 
FDA approval as a fi rst-line treatment in non-small-cell lung cancer112, 
renal-cell carcinoma113, urothelial carcinoma114, Hodgkin’s lymphoma115, 
and more. A second key anti-PD-1 ICB drug, pembrozilumab, has 
FDA-approval for similar treatments and also recently became the fi rst 
anticancer drug to receive “site-agnostic” approval — it is cleared for 
use on all mismatch-repair defi cient solid cancers, regardless of tissue 
type, with particular biomarkers116. The newest FDA-approved ICB 
drugs, including atezolizumab117 and durvalumab118, target PD-L1, the 
PD-1 ligand, thereby providing the same inhibition of PD-1 activation 
via a diff erent chemical approach. Combinatory approaches involving 
simultaneous use of both CTLA-4 and PD-1 or PD-L1 inhibitors119, or 
PD-1 inhibitors with additional T-cell costimulators120, are currently 
under development with promising preliminary results.
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In the context of PPM, eff ectively using these therapies will require 
diagnostics to determine the likelihood of a particular patient’s tumor 
responding appropriately to the ICB drug. Further investigations into 
the cellular mechanisms of the immune checkpoint are undergoing, with 
the aim of identifying biomarkers and other diagnostic features that 
could predict a patient’s response to this immunotherapy121. Potential 
biomarkers for anti-PD-1-based therapies include direct assessment 
of PD-L1 expression, density of tumor-infi ltrating lymphocytes, and 
quantity of mutation-related neoantigens in tumor cells; effective 
treatment will likely require using a combination of these and unknown 
other markers122. Th e frequency of CD4 T-cells expressing the inducible 
costimulator (ICOS) marker has been found to be a robust pharma-
codynamic biomarker for anti-CTLA-4-based treatment effi  cacy123. 
Development of clinical tests using these and other potential markers 
will enable a personalized immunotherapy approach for a wide variety 
of solid cancers.

Cancer vaccines
Cancer vaccines, which have long been envisaged as eff ective tools for 
cancer immunotherapy, are designed to amplify the tumor-specifi c T-cell 
response through active immunization124. Th rough selection of a suitable 
antigen target present on tumor cells, a potent and tumor-specifi c immune 
response can be induced. Studies have shown that tumor neoantigens, 
or antigens encoded by tumor-specifi c mutated genes, have a key role in 
therapeutic vaccination. Recent eff orts in acquiring omics data through 
NGS have allowed for the systematic discovery of tumor neoantigens 
that arise from somatic mutations and are therefore, tumor-specifi c124. 
Th is specifi city allows for diverse tumor neoepitopes (“peptides that arise 
from somatic mutations and are recognized as diff erent from self ”125) 
between individuals. Identifying these candidate tumor neoantigens on 
a per-patient basis has led to the development of personalized cancer 
vaccines124. RNA-Seq data from thousands of samples across 18 diff erent 
solid tumors from Th e Cancer Genome Atlas demonstrated a positive 
correlation between the number of neoantigens per tumor type and T-cell 
cytolytic activity specifi c for those tumors124. Furthermore, whole-exome 
sequencing analysis of 629 colorectal cancers showed that high neoantigen 
loads are associated with improved patient survival due to the ability to 
target multiple neoantigens at one time126. Preclinical experiments in both 
a melanoma model and a transplantable colon cancer model revealed that 
neoantigen vaccination elicited a selective T-cell response and eff ectively 
mediated antitumor activity. In a cholangiocarcinoma patient, adoptive 
transfer of neoantigen-specifi c CD4+ T-cells mediated tumor regression, 
demonstrating the clinical success of this therapy127. Therefore, the 
concept of targeting multiple neoantigens as a personalized cancer vaccine 
strategy has been realized and is being further researched and developed.

Th ere is currently only one FDA-approved cancer vaccine, sipuleucel-
T, which is indicated for metastatic prostate cancer that no longer 
responds to hormonal therapy128,129. It is based on the use of dendritic 
cells taken from the patient’s blood. In the lab, the dendritic cells are 
treated with prostatic acid phosphatase (PAP), an antigen that is found 
on most prostate cancer cells. Antigen-presentation is enhanced, so when 
the dendritic cells are infused back into the patient, their T-cells react by 
killing PAP-expressing tumor cells.

CAR T-cell therapies
Genetically engineered CAR T-cell therapies have also shown great prom-
ise in the advancement of individualized cancer immunotherapies130. 
Autologous T-cells are engineered to express a CAR that specifi cally 
targets and kills malignant cells or can be directed to remodel the tumor 
microenvironment through release of soluble factors130. Th rough recent 
advances in NGSTs, treatments that target tumor niches with a high degree 
of specifi city can be adapted to account for the tumor microenvironment’s 
heterogeneity and complexity. Gathering large data sets that describe 

diff erent tumor phenotypes/genotypes provides the possibility of precise, 
individualized design, and optimization of CAR T-cell-based therapies131. 
Current advancements in genome editing, including CRISPR and gene 
transfer, have improved CAR T-cell therapy development by increasing 
their tumor-specifi city130.

CAR T-cell therapies exemplify a personalized approach to cancer 
therapy because they directly prime a patient’s cells to better combat 
their own cancer. Th us far, this has been most successful in patients 
with relapsed or refractory malignancies who are resistant to treatment, 
particularly in chronic lymphocytic leukemia (CLL), which remains 
incurable through conventional therapies132. Results from initial trials 
using CAR-modifi ed T-cells to treat 14 patients with CLL showed 8 out 
of 14 (57%) successful responses with 4 complete remissions and 4 partial 
remissions with no relapses. Other successful preclinical and clinical trial 
data have led to the two fi rst FDA-approved genetically engineered cell 
therapies. Both are CAR T-cell products, Kymriah and Yescarta, which 
treat patients with relapsed or refractory B-cell acute lymphoblastic 
leukemia (ALL) and nonresponsive B-cell lymphoma, respectively. Th e 
safety and effi  cacy of Kymriah was demonstrated in 63 pediatric and young 
adult patients with ALL with overall remission rate within three months 
being 83%133. Unfortunately, like with many biologics and gene therapies, 
Kymriah has proven to show variability in manufacturing, limiting its 
market availability134. However, with continued advancements in these 
cell therapy technologies, the ability to tailor each individual patient’s 
treatment for their particular cancer is an attainable goal in the near future.

Companion diagnostics
CDx are medical devices that aid doctors in prescribing the most eff ective, 
personalized treatments for their patients18. Relevant genetic informa-
tion for characterizing cancers is found in defi ned stretches of DNA 
(i.e., oncogenes). In order to avoid sequencing the entire genome and 
obtaining extraneous information, some CDx are based off  these specifi c 
oncogenes and can be used to determine whether or not a person will 
respond to a certain treatment. Each CDx is associated with a particular 
drug therapeutic, which, in turn, is associated with a specifi c genetic 
abnormality for which it is most eff ective18.

Gaining insight into the molecular makeup of each patient’s cancer 
eliminates the misuse of ineff ective and potentially harmful drugs. Studies 
on cancer and tumor heterogeneity have led to the discovery of various 
genetic mutations known to drive cancer progression, for example, HER2 
mutations in the case of some breast cancers135–137. Th is discovery led 
to the development of therapeutics to target these precise mutations 
such as trastuzumab (Herceptin), which is the fi rst approved precision 
therapeutic to combat breast cancer caused by overexpression of the 
HER2 gene136,138,139.

A variety of diagnostic methods exist within the category of CDx 
products, each serving a specific functionality. These include im-
munohistochemistry (IHC), fluorescent in situ hybridization (FISH), 
and RT-qPCR (Table 5)140. Table 5 is a current overview from the 
FDA.gov website of the existing FDA approved CDx devices used in 
oncology. Many companies have developed different CDx devices 
specifically for trastuzumab, as this drug has been approved by the 
FDA since 1998136.

It is interesting to note that not all CDx play the role of identifying 
patients that would benefi t from a given therapy, as in the case of the FDA-
approved CDx QIAGEN Th erascreen141. Th is RT-qPCR type diagnostic is 
used to eliminate patients from receiving the drugs Vectibix and Erbitux 
for metastatic colorectal cancer. Th e Th erascreen PCR kit is meant to 
detect seven diff erent mutations in the KRAS gene. When patients suff er 
from a highly mutated form of colorectal cancer, they will no longer 
benefi t from taking Vectibix or Erbitux. Th erefore, the doctor will not 
prescribe them to these patients, preventing the use of unnecessary and 
ineff ective medications that come with negative side eff ects.
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Table 5 FDA-approved CDx for cancer treatments, by company. Th e FDA is responsible for evaluating the safety and effi  cacy of all medical devices, pharmaceutical 
products, and biological products sold in the United States (see Fig. 4). Th is table lists FDA-approved CDx for cancer treatment. Each of these products is used to 
detect a particular omics feature that is linked to a specifi c cancer phenotype. Positive results from these diagnostic tools help to indicate the potential effi  cacy of a 
PPM treatment.

Device 
manufacturer CDx name Drug Type Disease Device/Test specifi cs

Abbott Molecular
VYSIS ALK 
Break Apart 
FISH Probe Kit

Crizotinib FISH NSCLC Detect rearrangements in the ALK gene in fi xed NSCLC tissue 
from patients with NSCLC

Abbott Molecular
PATHVYSION 
HER-2 DNA 
Probe Kit

Trastuzumab FISH Breast cancer

Detect amplifi cation of HER2/NEU gene in fi xed, breast cancer 
tissue samples. Aid in predicting disease-free and overall 
survival in patients with stage II, node positive breast cancer 
treated with adjuvant cyclophosphamide, doxorubicin, and 
5-fl uorouracil (CAF) chemotherapy

Abbott Molecular Abbott Real 
Time IDH2 Enasidenib PCR AML Detects single nucleotide variants coding nine IDH2 mutation 

in samples extracted from patient’s blood or bone marrow

Abbott Molecular VYSIS CLL 
FISH Probe Kit Venetoclax FISH CLL Detect deletion of the LSI TP53 probe target from peripheral 

blood samples from patient with B-cell CLL

ARUP Labs PDGFRB FISH Imatinib mesylate FISH MDS/MPD Qualitative detection of PDGFRB gene rearrangement from 
fresh bone marrow samples of MDS/MPD patients

ARUP Labs KIT D816V 
Mutation Detection Imatinib mesylate PCR ASM Qualitatively determines the mutation level of the KIT D816V 

gene via fresh bone marrow samples of ASM patients

BioGenex Labs INSITE HER-2/NEU 
Kit Trastuzumab IHC Breast cancer

Semiquantitatively determine the overexpression of HER-2/
Neu of fi xed normal and neoplastic breast cancer tissue 
sections

bioMérieux THxID BRAF Kit Trametinib and dabrafenib PCR Melanoma

Detection of either BRAF V600E or BRAF V600K mutations 
in DNA samples extracted from fi xed, melanoma tissue. 
Patients who carry V600E mutations are eligible for 
dabrafenib and those who carry V600K mutations are 
eligible for trametinib

Dako Denmark HERCEPTEST
Trastuzumab, pertuzumab, 

and ado-trastuzumab 
emtansine

IHC
Breast and 

gastric 
cancer

Determine HER2 protein overexpression in fi xed breast 
cancer, metastatic gastric, or gastroesophageal junction 
adenocarcinoma tissues

Dako Denmark HER2 FISH 
PharmDx Kit

Trastuzumab, pertuzumab, 
and ado-trastuzumab 
emtansine

FISH
Breast and 

gastric 
cancer

Quantitatively determine HER2 gene overexpression in fi xed 
breast, metastatic gastric, or gastroesophageal junction 
adenocarcinoma tissues

Dako Denmark HER2 CISH 
PharmDx Kit Trastuzumab FISH Breast cancer Quantitatively determine HER2 gene status of fi xed, breast 

cancer tissue specimens

Dako North 
America

DAKO EGFR 
PharmDx Kit Erbitux and vectibix IHC Colorectal 

cancer
Identify EGFR expression in both fi xed, normal and neoplastic 

tissue samples from patient

Dako North 
America

DAKO C-Kit 
PharmDx Imatinib mesylate IHC GIST

Qualitative measure to identify c-kit protein/CD 117 antigen 
expression in both fi xed normal and neoplastic tissue 
samples

Dako North 
America

PD-L1 IHC 
22C3 pharmDX Pembrolizumab IHC NSCLC Using EnVision FLEX visualization system to detect PD-L1 

protein in fi xed, NSCLC samples

Foundation 
Medicine

FoundationOne 
CDxa Numerous PCR Numerous

Detects: substitutions, insertions, deletions and copy number 
alterations in 324 genes, select gene rearrangements, 
genomic signatures such as microsatellite instability and 
tumor mutational burden, from patient tissue biopsies

Foundation 
Medicine

FoundationFocus 
CDxBRCA Assay Rucaparib PCR Ovarian 

cancer
NGS-based detection of BRCA1 and BRCA2 (BRCA1/2) 

alterations from fi xed, ovarian tissue samples

Illumina Inc. Praxis Extended 
RAS Panel Panitumumab PCR Colorectal 

cancer
Detects 56 mutations in RAS genes from DNA extracted from 

patient tissue samples

Invivoscribe LeukoStrat CDx 
FLT3 Mutation Assay Midostaurin PCR AML

Detects internal tandem mutations and the tyrosine kinase 
domain mutations D835 and I836 in FLT3 gene from 
mononuclear cell DNA of AML patients

Leica Biosystems Bond Oracle 
HER2 IHC System Trastuzumab IHC Breast cancer

Semi-Quantitative assay to determine HER2 protein levels 
of fi xed, breast cancer tissues using the bond-max slide 
staining instrument
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Life Technologies Oncomine Dx 
Target Test

Dabrafenib, trametinib, 
crizotinib, and gefi tinib PCR NSCLC

Detects single nucleotide variants and deletions in 23 genes 
from DNA and fusions in ROS1 from RNA, isolated from 
patient tumor tissue samples

Life Technologies SPOT-LIGHT 
HER2 CISH Kit Trastuzumab FISH Breast cancer

Quantitatively determine HER2 gene overexpression from 
fi xed breast carcinoma tissues using CISH and brightfi eld 
microscopy

MolecularMD 
Corporation

MolecularMD 
MRDx BCR-ABL Test Nilotinib PCR CML

Detection of BCR-ABL1 transcripts and the ABL1 endogenous 
control mRNA in patient blood samples whom are receiving 
treatment for tyrosine kinase inhibitors

Myriad Genetic 
Labs

BRACAnalysis 
CDx Olaparib PCR Ovarian 

cancer

Detection and classifi cation of DNA variants in the protein 
coding regions and intron/exon boundaries of BRCA1/2 
genes using whole blood samples from patients

QIAGEN 
Manchester

Th erascreen 
EGFR RGQ 
PCR Kit

Afatinib PCR NSCLC
Detection of exon 19 deletions and exon 21 (L858R) 

substitution mutations of EGFR gene from fi xed, NSCLC 
tissue

QIAGEN 
Manchester

Th erascreen 
KRAS RGQ 
PCR Kit

Cetuximab and 
panitumumab PCR Colorectal 

cancer

Detection of seven somatic mutations in codons 12 and 13 of 
the KRAS gene in fi xed, colorectal cancer tissue. Treatment 
of erbitux and vectibix is issued upon a NO mutation test 
result

QIAGEN 
Manchester

Th erascreen 
EGFR RGQ 
PCR Kit

Gefi tinib PCR NSCLC
Detection of exon 19 deletions and exon 21 (L858R) 

substitution mutations of EGFR gene from fi xed, NSCLC 
tissue

Roche Molecular 
Systems

Th e COBAS 
KRAS Mutation Test

Cetuximab and 
panitumumab PCR Colorectal 

cancer

Detection of seven somatic mutations in codons 12 and 13 of 
the KRAS gene in fi xed, colorectal cancer tissue. Treatment 
of erbitux and vectibix is issued upon a NO mutation test 
result

Roche Molecular 
Systems

COBAS EGFR 
Mutation Test Erlotinib PCR NSCLC Detect deletion of exon 19 and substitution mutations of exon 

21 (L858R) of EGFR gene in DNA from fi xed NSCLC tissue

Roche Molecular 
Systems

COBAS EGFR 
Mutation Test v2 Erlotinib PCR NSCLC

Qualitative detection of defi ned mutations of the EGFR gene in 
NSCLC patients. Test can be run using fi xed NSCLC tissue 
samples or circulating free tumor DNA

Roche Molecular 
Systems

COBAS EGFR 
Mutation Test v2 Osimertinib PCR NSCLC Detect T790M mutation of EGFR gene in DNA of fi xed 

NSCLC tissue or ctDNA from NSCLC patients

Roche Molecular 
Systems

COBAS 4800 
BRAF V600 
Mutation Test

Vemurafenib PCR Melanoma Qualitative detection of BRAF V600E mutation in DNA 
extracted from fi xed melanoma tissue from patient

Ventana Medical 
Systems

VENTANA 
ALK (D5F5) 
CDx Assay

Crizotinib IHC NSCLC Intended for the detection of ALK in fi xed NSCLC tissue 
stained with a BenchMark XT instrument

Ventana Medical 
Systems INFORM HER-2/NEU Trastuzumab FISH Breast cancer Determines the qualitative presence of HER2/NEU gene 

amplifi cation from fi xed, breast cancer tissue samples

Ventana Medical 
Systems

INFORM HER2 
DUAL ISH 
DNA Probe Cocktail

Trastuzumab FISH Breast cancer
Determine HER2 gene status via enumeration of the ratio of 

the HER2 gene to chromosome 17 using fi xed, breast cancer 
tissue from patient

Ventana Medical 
Systems

PATHWAY ANTI-
HER-2/NEU (4B5) 
Rabbit Monoclonal 
Primary Antibody

Trastuzumab IHC Breast cancer
Semiquantitative detection of c-erbB-2 antigen (HER2) in 

fi xed, breast cancer tissue specimens using the Ventana 
automated IHC slide staining device

Ventana Medical 
Systems PD-L1 Atezolizumab IHC

Urothelial 
carcinoma 
and 
NSCLC

Assess PD-L1 protein expression levels in fi xed, patient tissue 
samples (stained with OptiView DAB IHC Detection 
Kit and OptiView Amplifi cation Kit on a VENTANA 
BenchMark ULTRA instrument)

aFirst FDA-approved CDx for a broad spectrum of applications.
Abbreviations: ALK: anaplastic lymphoma kinase, ASM: aggressive systemic mastocytosis, BRCA: breast cancer susceptibility gene, CDx: companion diagnostics, CISH: chromogenic in situ 
hybridization, CLL: chronic lymphocyctic leukemia, CML: chronic myeloid leukemia, EFGR: epidermal growth factor receptor, GIST: gastrointestinal stromal tumors, FDA: Food and Drug 
Administration, FISH: fl uorescence in situ hybridization, FLT3: FMS like tyrosine kinase 3, HER2: human epidermal growth factor receptor 2, IDH2: isocitrate dehydrogenase 2, IHC: immu-
nohistochemistry, MDS/MPD: myelodysplastic syndrome/myeloproliferative disease, NSCLC: non-small-cell lung cancer, PCR: polymerase chain reaction, PDGFRB: platelet derived growth 
factor receptor beta, PD-L1: programmed death-ligand 1, PPM: precision and personalized medicine. 

Source: Information compiled and modifi ed from U.S. Food and Drug Administration140.

Table 5 (Continued )

Device 
manufacturer CDx name Drug Type Disease Device/Test specifi cs
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Regulations for PPM
As the technological race advances and new tests and treatments that 
target specifi c patient populations are developed, regulatory agencies 
must devise novel approaches to ensure the safety, effi  cacy, and security 
of these products while allowing for innovation142,143. Th e regulatory 
landscape has been changing quickly, due in part by the enactment of 
the Precision Medicine Initiative in 2015, which required the FDA to 
develop a new platform to evaluate new PPM diagnostics and therapies19, 
and the 21st Century Act (Cures Act) in 2016, which accelerated medical 
product development by incorporating the patients’ perspective and also 
modernized clinical trial design144. Th e resulting evolution of the regula-
tory paradigm has driven an increase in the number of FDA approved 
PPM products and services. In 2005, only 5% of new drug approvals 
were PPMs, however, in 2017, over 30% of new drug approvals (16 new 
therapies) were PPMs9,145,146. Th e development of regulations that have 
allowed PPM to enter the market has involved several diff erent agencies, 
guidance documents, and approaches (Fig. 4).

Regulatory agencies overseeing PPM products and services
Th e FDA and the Center for Medicare and Medicaid Services (CMS), both 
falling under the Department of Health and Human Services (HHS), are 
the two agencies that hold primary responsibility for overseeing PPM 
services and products used in clinics, laboratories, and hospitals around 
the country147.

All medical devices, pharmaceutical products, and biological products 
sold in the United States are evaluated by the FDA for safety and effi  cacy 
before entrance to market, using a risk-based approach142. Diff erent 
centers within the FDA regulate diff erent types of medical products147, 
as depicted in Fig. 4. Th ese centers are involved with the approval and 
oversight of all products that fall into their defi ning categories, and 
therefore, also oversee relevant PPM products.

Regulations that fall outside of the FDA’s jurisdiction belong to CMS, 
CMS-approved third-party organizations, and state programs, which 
oversee rules pertaining to all clinical laboratories in the United States 
through the Clinical Laboratory Improvement Amendments (CLIA)148. 

Figure 4 Regulatory landscape for PPM 
products and services. A look at the 
structure of the agencies responsible 
for regulating PPM products. The FDA 
is responsible for evaluating the safety 
and efficacy of all medical devices, 
pharmaceutical products, and biologi-
cal products sold in the United States. 
Most CDx tests and treatment prod-
ucts fall under FDA jurisdiction. The 
CMS oversees all clinical laboratories 
in the United States, certifying that they 
meet quality and profi ciency standards 
for collecting and interpreting clinical 
data. Generally, the CMS is responsible 
for approving laboratory-developed 
diagnostic tests.
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CMS certifies that labs meet and maintain certain standards before 
performing tests and interpreting results on human samples. CLIA 
requirements generally include qualifi cations for laboratory personnel, 
quality systems for lab testing, oversight of test requests and reports, and 
profi ciency testing147.

Types of PPM and associated regulations
A wealth of products, innovations, and tests fall under the umbrella of 
PPM, and therefore, regulatory agencies must consider the appropriate 
requirements suited for each type. In this review, the discussion will be 
limited to CDx, NGS-based diagnostic tests, and laboratory developed 
tests (LDTs).

CDx regulations. As defi ned by the FDA, a CDx is “a medical device, 
oft en an in vitro device, which provides information that is essential for the 
safe and eff ective use of a corresponding drug or biological product”149. 
CDx assist healthcare providers in determining if a product’s benefi ts 
outweigh its risks for patients.

Since CDx are recognized as medical devices by the FDA, they are 
subjected to the premarket review process. Th e FDA recommends that a 
therapeutic product and its accompanying diagnostic test be developed and 
submitted for approval at the same time; if not, there is a risk of delaying the 
introduction of the product to the market and limiting access to patients. 
For example, Herceptin and HercepTest, the fi rst therapeutic product and 
CDx combination cleared by the FDA, were approved 6 months apart. 
Although this time gap was relatively short, it was recognized as a potential 
future risk for products if not developed together9. As a result, the FDA 
has since released two guidance documents: a fi nal guidance in 2014 titled 
In Vitro Companion Diagnostic Devices Guidance, which helped clarify its 
method for conducting simultaneous reviews of a therapeutic product 
and its associated CDx; and a draft  guidance in 2016 titled Principles for 
Codevelopment of an In Vitro Companion Diagnostic Device with a Th era-
peutic Product, which explained how therapeutic and diagnostic partners 
should interact with the FDA when codeveloping combination products. 
In addition, the FDA has recognized that routine biomarker testing prior 
to prescribing certain drugs is a class of CDx that will continue to grow. 
Th e FDA has therefore begun compiling a table of genomic biomarkers 
that they consider valid in guiding the clinical use of approved drugs150.

In vitro diagnostics — regulations for next-generation sequencing tests 
and laboratory-developed tests. Th e FDA defi nes an in vitro diagnostic 
(IVD) as a “test to identify patients who are likely to benefi t from specifi c 
treatments or therapies”151. IVDs may be marketed in one of two ways: 
as IVD kits or as LDTs, which present another set of challenges for 
regulatory agencies. Th e main diff erence between IVD kits and LDTs 
is that IVD kits are developed by a conventional device manufacturer 
and are commercially available for healthcare providers, while LDTs 
are designed, manufactured, and used by a single laboratory147. As a 
consequence of this distinction, the regulatory jurisdiction of IVD kits 
and LDTs has generally fallen into two separate agencies, the FDA and 
CMS, respectively. In addition, if an FDA-approved IVD kit is modifi ed 
by a clinical laboratory, it will be classifi ed as an LDT (falling into CMS 
jurisdiction) and will not be required to undergo premarket review; 
however, if the same IVD kit is modifi ed by a device manufacturer, it will 
be subjected to the premarket review process (FDA jurisdiction)152. Th is 
dichotomy has created more confusion about the proper regulatory path 
for new PPM products. Th e approaches that the FDA has taken to ensure 
the safety and reliability of IVDs are described below.

One type of IVD is NGS-based tests, which are used to fi nd genetic 
variants that help diagnose, treat, and understand more about human 
disease151. Th e thorough sequencing capabilities of NGSTs present a 
challenge for the current regulatory approaches, which were developed for 
conventional diagnostics that detect a single disease or condition. In con-
trast, a single NGS test can yield the equivalent amount of information that 
millions of traditional tests provide143. Th erefore, NGS test development 

and regulation of NGS-based IVD will require more fl exible oversight, 
which the FDA has pursued by using consensus standards, crowd-sourced 
data, and open-source computing technology approaches143. According 
to the FDA, “this strategy will enable innovation in testing and research, 
and will expedite access to accurate, reliable genetic tests”151.

In an eff ort to streamline the regulatory oversight of NGS-based 
tests by leveraging crowd-sourced data and consensus standards, the 
FDA released two fi nal guidance documents in 2018: Use of Public Hu-
man Genetic Variant Databases to Support Clinical Validity for Genetic 
and Genomic-Based In Vitro Diagnostics, which describes the process 
of developing and using FDA-recognized public genome databases to 
support the clinical validity of a test, and Considerations for Design, 
Development, and Analytical Validation of Next Generation Sequencing 
(NGS) — Based In Vitro Diagnostics (IVDs) Intended to Aid in the Diag-
nosis of Suspected Germline Diseases, which provides recommendations 
for designing, developing and validating NGS-based tests143. In addition, 
it encourages the development of NGS-related standards by community 
engagement and standards-developing organizations. Furthermore, the 
FDA has developed a bioinformatics platform named precisionFDA. Th is 
is an open-source cloud-based community that allows individuals and 
organizations in the genomic fi eld across the world to share data and 
tools to test, pilot, and validate bioinformatics approaches143,153. Th is 
platform further enhances the widespread collaboration that is needed for 
the technological development of NGS-based tests and demonstrates the 
FDA’s support of this notion as they work to create suitable regulations.

LDTs, which are diagnostic tests that are designed, manufactured, 
and used within a single laboratory, also fall under the broad category 
of IVDs147,154. Since these tests are made for “in-house use” and are not 
commercially distributed, their regulatory oversight has generally fallen 
under CMS jurisdiction, which subjects them to CLIA rules. Although the 
FDA has claimed authority to regulate LDTs, it has generally chosen not 
to actively exert this power under the “enforcement discretion” policy147. 
Th is policy has been historically applied to simple LDTs, such as in-house 
vitamin D or sodium assays; however, LDTs have since become more 
complex and therefore pose higher risks for the patient — risks that are 
similar to those associated with other IVDs regulated by the FDA154. Th is 
change in the nature of LDTs, with specifi c regards to PPM, has led the 
FDA to occasionally exert its power. Th is confusion and current lack of a 
regulatory path for LDTs has made it unclear in which specifi c cases FDA 
requirements also apply in addition to those from CMS. For example, in 
2005 the FDA subjected the MammaPrint (Agendia BV) breast cancer 
recurrence assay to premarket approval. Th e lack of data showing clinical 
benefi ts to patients was a major concern for the overseeing FDA offi  cials. 
Several years later, in 2008, MammaPrint fi nally received FDA approval, 
when the markers proved clinical benefi ts for patients with breast cancer. 
Th e MammaPrint assay was reclassifi ed as an in vitro diagnostic multivari-
ate index assay (IVDMIA), which is a type of LDT147. As seen by this 
example, the FDA has exercised regulatory authority over LDTs to varying 
degrees under diff erent circumstances. Th is, in combination with several 
other factors (e.g., FDA vs. CMS oversight, categorization of IVDs as 
medical devices vs. LDTs, and diff erent guidance documents/standards 
applied), has led to confusion and uncertainty in the market, which has 
hindered biotechnology and pharmaceutical industries’ investment in 
the PPM fi eld.

Due to the FDA’s evolving concerns regarding the rapid expansion and 
the intended uses of certain LDTs as CDx for PPM products and services, 
the agency issued two draft  guidance documents in 2014 titled Framework 
for Regulatory Oversight of Laboratory Developed Tests (LDTs) and FDA 
Notifi cation and Medical Device Reporting for Laboratory Developed Tests 
(LDTs). Th e goal of these documents was to provide clarity regarding the 
extent of FDA oversight of LDTs. However, aft er engaging with multiple 
stakeholders and revising more than 300 comment sets and alternative 
proposals, the agency recently announced that it will not yet issue fi nal 
guidance documents on this topic154. Th is decision was made to allow 
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for further public discussion, and hopefully consensus, on an appropriate 
regulatory approach. Instead, the FDA published a discussion paper in 
2017 summarizing the feedback received and alternative proposals to 
further advance public discussion on LDT oversight152.

Future regulatory landscape for PPM
Despite the regulatory challenges that exist, the processes outlined by 
several guidance documents (Table 6) refl ect the FDA’s willingness to 
adapt to the changing landscape of medicine9, along with consideration 
of feedback from scientists, clinicians, and patients. In response to the 
increase in the number of PPM products and services, the growing 
demand for regulatory clarity, and the enactment of the Precision 
Medicine Initiative and the Cures Act, the FDA began working on the 
PPM platform over a decade ago. Its aim is to provide a rapidly evolving 
strategy to approve new PPM diagnostics and drugs, while maintaining 
high standards of safety and effi  cacy. Nevertheless, the regulatory land-
scape of the PPM fi eld is still emerging — and is still convoluted — due 
to the complex nature of many PPM products and services that fall 
under the oversight of multiple regulatory centers. Moreover, the vast 
data sets that are generated from some PPM products, particularly NGS-
based tests, present large challenges for regulatory agencies, as privacy 
concerns must also be considered. As PPM becomes an even larger part 
of modern medicine, it is pertinent for discussions regarding regulations 
to be on-going and for regulatory documents to be continually adapted 
and updated. Based on recent changes to how the FDA will be changing 
regulations governing gene therapy in order to streamline review, the 
agency recognizes the need for these adaptations155. Eff orts that address 
diffi  cult regulatory decisions regarding PPM may begin to cover other 

controversial topics surrounding this fi eld, particularly in regards to 
economics and ethics.

BROADER CONSEQUENCES OF PPM
Th us far in this review, we have considered the science and technology 
behind PPM — the sequencing, the data analysis, and the development 
of CDx — but what about the broader implications of PPM on health-
care? When it comes down to cost, is PPM worth the investment for 
biopharmaceutical companies? Is it worth the investment in the eyes of 
healthcare insurers? And, is it an unnecessary risk to acquire vast amounts 
of sensitive and personal health information that can potentially be used 
against patients? Here we discuss important considerations that must be 
made as PPM quickly enters the clinic and reaches more patients.

Economics
In 2015, national healthcare spending in the United States was $3.2 
trillion, or $9,900 per person, with $324.6 billion spent on prescription 
drugs156. Th is makes the United States the largest healthcare spender in 
the world. Despite being the leader in healthcare spending, Americans 
have poor health outcomes, including shorter life expectancy and 
greater prevalence of chronic conditions, when compared to 12 other 
high-income countries (Australia, Canada, Denmark, France, Germany, 
Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, and the 
United Kingdom)157. Many proponents of PPM believe it has the ability 
to reduce healthcare spending through the identifi cation of therapy 
responders and nonresponders during both clinical trials and, upon 
approval, in clinical use. Th is section seeks to explore how PPM can be 

Table 6 FDA policy and guidance documents on PPM. A summary of guidance documents developed by the FDA related to PPM regulation and oversight. Regulatory 
processes for PPM products, which oft en encompass multiple FDA categories, are complex, but the FDA has been willing to adapt to the continual evolution of PPM 
treatments as evidenced by the publication of these standards.

Year Guidance document Status

2005 Pharmacogenomic Data Submissions Final guidancea

2007 Pharmacogenomic Tests and Genetic Tests for Heritable Markers Final guidance

2007 In Vitro Diagnostic Multivariate Index Assays Draft  guidance

2008 E15 Defi nitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, Genomic Data, and Sample Coding Categories Final guidance

2011 E16 Guidance on Biomarkers Related to Drug or Biotechnology Product Development: Context, Structure, and Format of 
Qualifi cations Submissions Final guidance

2012 Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and Biological Products Draft  guidance

2013 Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical Studies and Recommendations for Labeling Final guidance

2013 Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical Studies and Recommendations for Labeling Final guidance

2014 Qualifi cation Process for Drug Development Tools Final guidance

2014 In Vitro Companion Diagnostic Devices Final guidance

2014 Framework for Regulatory Oversight of Laboratory Developed Tests (LDTs) Draft  guidance

2014 FDA Notifi cation and Medical Device Reporting for Laboratory Developed Tests (LDTs) Draft  guidance

2016 Use of Standards in FDA Regulatory Oversight of Next Generation Sequencing (NGS)-Based In Vitro Diagnostics (IVDs) Used 
for Diagnosing Germline Diseases Draft  guidance

2016 Use of Public Human Genetic Variant Databases to Support Clinical Validity for Next Generation Sequencing (NGS)-Based 
In Vitro Diagnostics Draft  guidance

2016 Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Th erapeutic Product Draft  guidance

2017 Discussion Paper on Laboratory Developed Tests (LDTs) Discussion paper (no 
enacted guidance)

2018 Use of Public Human Genetic Variant Databases to Support Clinical Validity for Genetic and Genomic-Based In Vitro Diagnostics Final guidance

2018 Considerations for Design, Development, and Analytical Validation of Next Generation Sequencing (NGS) — Based In Vitro 
Diagnostics (IVDs) Intended to Aid in the Diagnosis of Suspected Germline Diseases Final guidance

aNote that guidance documents provide insight into FDA’s policies, but are not legally binding.
FDA: Food and Drug Administration, PPM: precision and personalized medicine.

Source: Adapted from Personalized Medicine Coalition9.
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used in both drug development and clinical use and if healthcare costs 
will be reduced, both for payers and patients.

PPM in drug development
Th e cost to develop a drug, taking it from the laboratory bench top to 
market, currently exceeds $2.5 billion157. Developing new therapies is 
a high-risk, expensive, and long-term endeavor. Moreover, the number 
of successful candidates is incredibly small, and those few drugs that do 
make it to market must support the development costs of all other drugs 
in the pipeline. Because costs are so high, pharmaceutical companies 
pass expenses to the consumers. Companies need to recoup the money 
invested in order to fund the research and development for the next 
generation of therapies.

PPM has the potential to reduce the risk and cost of drug develop-
ment, particularly in clinical trials, one of the most expensive stages of 
development. Th e cost savings are rooted in stratifying patients into 
smaller subsets and identifying a population that is more likely to respond 
well to the proposed therapy, oft entimes with the use of CDx. By focus-
ing on smaller populations, clinical trial size will shrink, substantially 
reducing the costs. In addition, the population admitted to the trial is 
more likely to respond to the therapy, reducing the risk associated with 
failed clinical trials138.

Th e cost savings and reduced risk of clinical trials associated with the 
PPM has been quantifi ed for a number of diseases. Studies have shown that 
approximately 11% of drugs that enter Phase I clinical trials obtain FDA 
approval. However, clinical trials of targeted therapies have higher success 
rates. Falconi et al. conducted an analysis of stage IIIb–IV clinical trials 
of non-small-cell lung cancer therapies. In the 676 analyzed trials that 
occurred between 1998 and January 2012, biomarker targeted therapies 
had a 62% cumulative success rate. Th is is almost six times greater than 
the 11% cumulative success rate for any drug entering a Phase I clinical 
trial. Further, they found therapies that targeted receptors provided the 
largest cumulative success rate of 31% when compared to other therapeutic 
mechanisms. Th ese results suggest that through the use of biomarkers and 
PPM, there are therapeutic mechanisms and design strategies that can 
decrease the amount of risk during drug development158. Th e Falconi et al. 
study quantifi ed the reduction in risk-adjusted drug development costs. 
Th e cost for stage IIIb–IV non-small-cell lung cancer was estimated to 
be $1.9 billion. However, the use of a biomarker in this disease treatment 
resulted in a 26% reduction in risk-adjusted drug development costs.

Th e cost and risk reduction found for non-small-cell lung cancer are 
consistent with fi ndings from the analyses of trials for other diseases. 
Parker et al. analyzed trials for advanced metastatic breast cancer that 
stratifi ed patients that were positive for the HER2 biomarker compared 
to patients that had either failed or had been exposed to anthracycline 
or taxane159. The overall success rate of new drug development in 
anthracycline/taxane-exposed patients was only 15%, while in the HER2-
positive patients it was 23%. Th e cost for the clinical trial testing alone, 
when adjusted for risk, was $199 million for the HER2-positive patients, 
substantially lower than the $274 million for the anthracycline/taxane 
patients. Th is represents a 27% cost savings and reduced clinical trial 
risk up to 50%. Parker et al. also published analyses of non-Hodgkin’s 
lymphoma clinical trials, again confirming targeted therapies had a 
higher success rate versus nontargeted, broad acting therapeutics160. 
While limited to the oncology fi eld and a small number of cancer types, 
these analyses suggest that a PPM approach can lead to signifi cant cost 
savings and risk reduction during the drug development and clinical trial 
process. More retrospective cost and risk analyses of clinical trials must 
be completed, as the benefi t of this approach is likely to vary greatly in 
diff erent disease types.

Reducing patient cost with PPM
In traditional patient care, when a patient is presented with a specifi c 
indication, the doctor will prescribe a fi rst-line therapy161. Generally, the 

physician does not take into account patient demographics or disease-
specific biomarkers when prescribing this therapy. If the first-line 
treatment does not work, the physician will try a second-line treatment 
or use a combinatorial approach to treat the patient. Th is approach does 
not identify a patient’s likelihood of positive response to treatment, nor 
does it predict if the patient will have severe side eff ects. In the United 
States, the cost of adverse drug reactions in 2013 was more than $30 bil-
lion162. Th rough the use of diagnostics to stratify patients into responders, 
nonresponders, and those likely to have severe side eff ects, this cost can 
be reduced163.

In the current healthcare landscape, PPM approaches are used only 
aft er other therapies fail. Particularly in oncology, these conventional 
treatments, such as radiation and chemotherapy, can take an enormous 
toll on patients, leaving them exhausted, weakened, and unprepared for 
later treatments. In some cases, it limits patients’ abilities to travel to 
clinical trial sites to participate in potentially lifesaving studies161. Worse, 
it can take a great deal of time to determine if these fi rst-line treatments 
are having a positive eff ect — time that patients with advanced conditions 
rarely have.

When PPM approaches are fi nally employed, large portions of the 
cost of these tests and therapeutics typically fall to the patients. Th is 
is in addition to the costs they have already incurred during fi rst line 
therapies. Medicare and other payers frequently classify genomic-based 
screening and treatment into specialty tiers which require patients to pay 
amounts that far outweigh typical copays161. Oft en, patients are expected 
to assume a minimum of 20%–40% of the total cost of treatment. With 
these specialized approaches and complex biologic therapeutics, it is 
common for these costs to reach tens of thousands of dollars and even 
higher. Th is can put PPM treatments out of fi nancial feasibility for some, 
and the patients and loved ones who do receive treatment can be saddled 
with crippling hospital expenses.

Th ere are several omics approaches that can be used to identify the 
best therapy for a patient. Certainly, the identifi cation of disease-specifi c 
genetic variants and biomarkers that can be exploited is an important 
undertaking, but the enormity of the work, time, and cost involved should 
not be understated. Furthermore, the costs of performing genetic analysis 
for every patient ahead of fi rst line therapies is currently unrealistic, 
despite the fact that technology continues to lower sequencing costs. 
Another promising approach is using metabolomics to determine how 
a patient will metabolize specifi c therapeutics. Th is approach is more 
direct and effi  cient in providing meaningful information compared to 
other omics approaches, since many pharmaceuticals are metabolized by 
just a few proteins in the liver and many adverse drug reactions can be 
traced back to variations in these enzymes. Brixner et al. demonstrated 
this approach in a 2016 study that tested elderly patients for genetic 
variations in cytochromes P450, a family that contains major enzymes 
involved in drug metabolism164. The study followed patients whose 
treatment was informed using a medication management clinical decision 
support tool. It was observed that the patients that were DNA tested and 
treated according to the personalized prescribing system had signifi cantly 
lower hospitalizations and emergency department visits, resulting in cost 
savings. Th ese results are consistent with a previous study that tested 
patients for known drug–gene interaction risk to inform their treatment 
protocol165.

As the aforementioned studies have demonstrated, identifying 
responders or nonresponders can result in cost savings during both drug 
development and clinical use of pharmaceuticals. While this potential 
savings is promising, the real question is if healthcare spending will 
actually be decreased through the use of these tools. Many supporters 
say yes, but skeptics point out that by stratifying patients and targeting 
therapies, the pharmaceutical companies are shrinking their available 
market share, which could result in a price increase to off set reduced 
volume. Th is means that this strategy is only economically benefi cial 
in markets with pricing fl exibility, where buyers and sellers are able to 
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negotiate on price. Pricing fl exibility will vary based on payer’s price 
sensitivity, which is highly dependent on disease area. Not only is pricing 
fl exibility a requirement to make this approach economically attractive, 
but the underlying pathophysiological principles of the targeted disease 
must be understood. Th is leaves conditions like psychiatric disorders, 
which carry a great societal and healthcare burden, out of the current 
scope of PPM, as they are currently too poorly understood to benefi t 
from the approach163.

Adoption by payers
While PPM may hold great potential to reduce costs in the long run, 
it is unclear who foots the bill in the interim. Currently there are very 
few instances of private insurance companies or government payers 
providing reimbursement for broad-based genomic testing and analysis. 
Insurance companies and payers rely on mountains of outcome-based 
data to determine what they will cover. Payers are hesitant to support 
new and untested treatments without overwhelming evidence that they 
will be eff ective. As PPM is a new and emerging fi eld, a suffi  cient level 
of data and evidence has not been accumulated to support widespread 
reimbursement for such treatments in the eyes of the payers.

The amount of evidence is growing, however, and some payers 
are catching on. In December 2015, Foundation Medicine announced 
that they had reached an agreement with UnitedHealthcare, one of 
the largest private insurance companies in the United States, on their 
genomic profi ling assay166,167. UnitedHealthcare agreed to reimburse the 
use of the genomic profi ling assay for patients with metastatic stage IV 
non-small-cell lung cancer. Th is move has been described as a critical 
fi rst step toward bringing genomic profi ling into the standard treatment 
of care for metastatic cancers. While it is a positive move toward wider 
adoption, both in terms of indications and payers, the greatest industry 
shift  toward PPM will likely come when Medicare adopts a reimbursement 
policy for PPM treatments. Medicare represents the largest single payer in 
the United States, comprising 20% of total national health expenditures 
in 2015156,168. As such, many private insurance companies use Medicare 
to benchmark their own coverages. When and if Medicare adds increased 
coverages for broad genomic assays as a part of standard treatment, other 
insurance companies would surely follow.

On the surface, a PPM approach holds great potential benefi t to both 
the pharmaceutical industry and patients. However, with the complexi-
ties of the existing healthcare environment, involving drug developers, 
regulators, clinicians, and payers, the immediate and lasting benefi ts 
are not as clear. Trends toward outcome- and value-based pricing and 
reimbursement models greatly increase the fi nancial value of PPM. Th is 
type of model will require collaboration between regulatory agencies 
and industry to develop and shape adjusted drug development and ap-
proval processes. Additionally, collaboration and willingness of payers 
to adopt these approaches is critical to make PPM economically viable 
and benefi cial for patients and the industry as a whole.

Ethics
Tied into the economic considerations of PPM are the ethical considera-
tions. With the added power of harnessing large amounts of medical data 
comes the heavy responsibility of protecting and distributing it correctly. 
Th e medical fi eld is now poised to move from a “one size fi ts all” approach 
to a PPM method of treating patients based on the individuality of this 
information. However, this comes at a cost, as some patients may be at 
a disadvantage due to a shift  in allocation of resources throughout the 
healthcare system. Th ere are also issues related to implementation and 
control of data. Clinicians may have to reach an agreement with insurance 
companies and researchers that allows for providing the best possible 
treatment while also protecting patient privacy.

Generating genetic information and linking it to patient outcome 
will aid researchers and clinicians immensely, but it also means that the 
practice of informed consent will need to be substantially updated169. 

Some have suggested the development of “translational ethics” that 
involves the patients as much as possible in the research and clinical 
processes. One successful study, CARPEM, formed a patient committee 
group tasked with designing a pamphlet explaining the informed consent 
process in a patient-friendly manner170. Others have suggested updating 
the “social contract” between clinicians, researchers, patients, and society 
as a whole171. Since patients are the stakeholders who will benefi t the most 
from advances in PPM, involving them as much as possible may be the 
best strategy for moving forward.

Th is review has focused on cancer for the sake of brevity, but it is 
easy to imagine how similar issues would apply to psychiatric disorders 
or autoimmune diseases. Regardless of the clinical application, as the 
fi eld of PPM advances, standard ethical practices surrounding clinical 
medicine and research will need to be updated.

OUTLOOK
Overall, the promise of PPM is exciting and inspiring, and it has the 
potential to transform the way in which cancer is eff ectively treated. 
As a result of PPM, if omics testing is performed prior to treatment, 
patients would be less likely to experience adverse side eff ects from 
a treatment that is ultimately ineff ective, for example, chemotherapy, 
and, rather, would only spend time and resources on personalized, 
eff ective treatments. Th e incentive for pharmaceutical industries would 
be to develop more eff ective drugs that have a greater chance of being 
approved, albeit for a smaller population172. Th is shift  toward a more 
tailored treatment experience would benefi t patients to a great extent 
in the long run. Making this a reality, however, requires many key 
players — physicians, insurance companies, and regulators — to come 
together for the benefi t of the patient. Th ese players each have their 
own compelling reasons for resisting this transition to PPM, including 
needing enough evidence to support new strategies or concern about 
the profi tability of disease prevention. Regulators are caught between 
physicians, insurers, and pharmaceutical companies and must decide 
which agencies are responsible for modifying the rules in the new era 
of PPM. Ultimately, it may be up to patients to push for these changes 
since they stand to benefi t the most172.

While it is important to recognize the promise and potential of PPM, 
it is also important to ask whether the loft y goals proposed by advocates 
are realistic. Will we actually be able to treat each patient individually? 
Th e answer is almost certainly not, but we may be able to treat subpopula-
tions more eff ectively. Moreover, depending on how the costs to cover 
the implementation of PPM are distributed, who will truly benefi t from 
it? Th e answer is, in the short term, probably only those with private 
insurance and enough disposable income will be able to aff ord additional 
genetic tests172. Additionally, even if healthcare based on PPM was equally 
accessible to all, it might not reach those who need it most. Instead of 
focusing on improving clinical care, it has been posited that we should 
be working to remedy the social structures that prevent disadvantaged 
groups from leading healthier lives. Th is may in fact be the best way to 
improve population health since income is one of the most signifi cant 
determinants of health outcomes173.

SUMMARY AND CONCLUSIONS
Th e PPM fi eld has grown and matured tremendously since the milestone 
achievement of sequencing an entire human genome in 2003. Research 
has moved beyond sequencing more accurately to linking this information 
to individual patient outcomes and treatment responses. Many challenges 
still remain in sorting through massive quantities of biological data to 
identify clinically relevant markers for disease susceptibility and treat-
ment effi  cacy. Cancer treatment in particular stands to highly benefi t 
from PPM therapies, since extensive variability between tumors presents 
a need to target each case in a personalized manner. Recent work has 
focused on the development of more accurate tumor models (organoids) 
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and harnessing the specifi city of the immune system to develop eff ective 
cancer vaccines or mAbs.

The personalized treatment approach has resulted in improved 
patient outcomes in terms of response rate and progression-free survival 
in Phase I clinical trials that selected patients using a specifi c biomarker 
versus those that did not174. Th e improvements between the personal-
ized versus nonspecifi c approach were 30.6% versus 4.9% response rate 
and 5.7 versus 2.95 months progression-free survival in cancer patients. 
Th ese statistics show a dramatic improvement in patient response when 
they are matched to treatments for their specifi c disease; however, there 
is still much room for improvement. Additionally, development of PPM 
therapies must be performed with careful regards to evolving regulations. 
As researchers acquire PPM data and companies develop PPM therapies, 
regulators, clinicians, patients, and the public must consider the broader 
consequences of PPM. A major collaborative eff ort between all associated 
groups — scientists, biopharmaceutical companies, insurers, clinicians, 
regulators, and patients — will be necessary to keep driving PPM forward 
and make it a viable fi eld that benefi ts all.

ACKNOWLEDGEMENTS
A majority of the students working on this comprehensive review 
(fi rst 12 authors) were funded by the Graduate Training in Emerging 
Areas of Precision and Personalized Medicine Grant (award number 
P200A150131) from the U.S. Department of Education awarded to 
Rutgers University, with Professor. Martin Yarmush as program director 
and principal investigator. We would like to thank the program for this 
outstanding learning opportunity, and also all of the speakers that were 
part of the 2016–2017 GAANN Precision and Personalized Medicine 
Seminar Series. Th e knowledge that was shared within the seminar series 
played an important role in shaping this review article. We would also like 
to acknowledge funding from Th e National Institute of General Medical 
Sciences (NIH T32 GM008339).

Author contributions were as follows: Krzyszczyk played a leading 
role in the organization, fl ow, project management, and fi nal submission 
of the article. White also played a leading role when setting the initial 
foundation of the review. Acevedo helped with organization during 
fi nal submission. Davidoff  and Krzyszczyk worked together to envision 
and create all fi gures. Th e written contributions are as follows: for the 
Introduction: Timmins, Davidoff , and Krzyszczyk; for Acquiring PPM 
Data: Acevedo, Davidoff , Hartmanshenn, Patel, and Krzyszczyk; for 
Developing a PPM Product: Timmins, Marrero-Berríos, Acevedo, Sherba, 
Patel, Balter, Davidoff , and Fritz; for Broader Consequences of PPM: 
White, Lowe, O’Neill, and Timmins; for Outlook: O’Neill and Timmins; 
and for Summary and Conclusions: Krzyszczyk.

Schloss played an essential role in the development of the review 
article, from beginning to end. Her support and feedback greatly 
contributed to the completion of a polished, fi nal product. As scientifi c 
leaders, Androulakis and Yarmush provided knowledgeable perspectives 
and opinions on the fi eld of PPM. Yarmush also played an important role 
in the original conception and in guiding the group of authors during 
the evolution of the article.

REFERENCES
 1. National Cancer Institute. Cancer statistics (2018), https://www.cancer.gov/about-

cancer/understanding/statistics
 2. National Cancer Institute. Cancer types (2018), https://www.cancer.gov/types
 3. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identifi ed by gene 

expression profi ling. Nature 403, 503–511 (2000).
 4. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 

21, 1350–1356 (2015).
 5. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 

(2000).
 6. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 

(2002).
 7. National Cancer Institute. Types of cancer treatment (2017), https://www.cancer.gov/

about-cancer/treatment/types

 8. Morgan, G., Ward, R. & Barton, M. The contribution of cytotoxic chemotherapy 
to 5-year survival in adult malignancies. Clin. Oncol. (R. Coll. Radiol.) 16, 549–560 
(2004).

 9. Personalized Medicine Coalition. The personalized medicine report. Opportunity, 
challenges, and the future (2017), http://www.personalizedmedicinecoalition.org/
Userfi les/PMC-Corporate/fi le/The_PM_Report.pdf

 10. Maciejko, L., Smalley, M. & Goldman, A. Cancer immunotherapy and personalized 
medicine: Emerging technologies and biomarker-based approaches. J. Mol. Biomark. 
Diagn. 8, (2017).

 11. Burney, I.A. & Lakhtakia, R. Precision medicine: Where have we reached and where 
are we headed? Sultan Qaboos Univ. Med. J. 17, e255–e258 (2017).

 12. Williams, S.C. News feature: Capturing cancer’s complexity. Proc. Natl. Acad. Sci. 
U. S. A. 112, 4509–4511 (2015).

 13. Soda, M. et al. Identifi cation of the transforming EML4-ALK fusion gene in non-small-
cell lung cancer. Nature 448, 561–566 (2007).

 14. Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive 
relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by 
BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2014).

 15. Verma, M. Personalized medicine and cancer. J. Pers. Med. 2, 1–14 (2012).
 16. Agilent. Herceptest, https://www.agilent.com/en-us/products/pharmdx/herceptest-

kits/herceptest
 17. Myriad. Bracanalysis, https://myriad.com/products-services/hereditary-cancers/

bracanalysis/
 18. U.S. Food and Drug Administration. Mobile medical applications — Guidance for 

industry and food and drug administration staff (2015), https://www.fda.gov/downloads/
MedicalDevices/.../UCM263366.pdf

 19. U.S. Food and Drug Administration. FDA advances precision medicine initiative by issuing 
draft guidances on next generation sequencing-based tests (2016), https://www.fda.gov/
newsevents/newsroom/pressannouncements/ucm509814.htm

 20. U.S. National Library of Medicine. What is the difference between precision medicine 
and personalized medicine? What about pharmacogenomics? (2018), https://ghr.nlm.
nih.gov/primer/precisionmedicine/precisionvspersonalized

 21. Appendix E. Toward Precision Medicine: Building a Knowledge Network for Biomedical 
Research and a New Taxonomy of Disease (The National Academies Press, 2011), 
pp. 124–145.

 22. Chial, H. DNA sequencing technologies key to the human genome project. Nat. Educ. 
1, (2008).

 23. Goodwin, S., McPherson, J.D. & McCombie, W.R. Coming of age: Ten years of next-
generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

 24. Munroe, D.J. & Harris, T.J. Third-generation sequencing fi reworks at marco island. 
Nat. Biotechnol. 28, 426 (2010).

 25. Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. 
PLOS Comput. Biol. 13, e1005457 (2017).

 26. Kukurba, K.R. & Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. 
Protoc. 2015, 951–969 (2015).

 27. Buguliskis, J.S. Could RNA-Seq become the workhorse of precision medicine? Plowing 
through transcriptional variations by harnessing the powerful next-gen technique. 
Genet. Eng. Biotechnol. News 35, 8–9 (2015).

 28. Larance, M. & Lomond, A.I. Multidimensional proteomics for cell biology. Nat. Rev. 
Mol. Cell. Biol. 16, 269–280 (2015).

 29. Han, X.M., Aslanian, A. & Yates, J.R. Mass spectrometry for proteomics. Curr. Opin. 
Chem. Biol. 12, 483–490 (2008).

 30. Duarte, T.T. & Spencer, C.T. Personalized proteomics: The future of precision medicine. 
Proteomes 4, (2016).

 31. Gregorich, Z.R. & Ge, Y. Top-down proteomics in health and disease: Challenges and 
opportunities. Proteomics 14, 1195–1210 (2014).

 32. Sidoli, S. et al. Metabolic labeling in middle-down proteomics allows for investigation 
of the dynamics of the histone code. Epigenetics Chromatin 10, 34 (2017).

 33. Monteiro, M.S., Carvalho, M., Bastos, M.L. & Guedes de Pinho, P. Metabolomics 
analysis for biomarker discovery: Advances and challenges. Curr. Med. Chem. 20, 
257–271 (2013).

 34. Roessner, U. & Bowne, J. What is metabolomics all about? Biotechniques 46, 363 (2009).
 35. Everett, J.R., Loo, R.L. & Pullen, F.S. Pharmacometabonomics and personalized 

medicine. Ann. Clin. Biochem. 50, 523–545 (2013).
 36. Eckhart, A.D., Beebe, K. & Milburn, M. Metabolomics as a key integrator for “omic” 

advancement of personalized medicine and future therapies. Clin. Transl. Sci. 5, 
285–288 (2012).

 37. Prosser, G.A., Larrouy-Maumus, G. & de Carvalho, L.P.S. Metabolomic strategies for 
the identifi cation of new enzyme functions and metabolic pathways. EMBO Rep. 15, 
657–669 (2014).

 38. Li, S.Z., Todor, A. & Luo, R.Y. Blood transcriptomics and metabolomics for personalized 
medicine. Comput. Struct. Biotechnol. J. 14, 1–7 (2016).

 39. Dunn, W.B. & Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. 
Trac-Trend. Anal. Chem. 24, 285–294 (2005).

 40. Kaufmann, A., Butcher, P., Maden, K., Walker, S. & Widmer, M. Comprehensive 
comparison of liquid chromatography selectivity as provided by two types of liquid 
chromatography detectors (high resolution mass spectrometry and tandem mass 
spectrometry): “Where is the crossover point?”. Anal. Chim. Acta. 673, 60–72 (2010).

1830002.indd   971830002.indd   97 1/8/2019   10:22:17 AM1/8/2019   10:22:17 AM

T
ec

hn
ol

og
y 

20
18

.0
6:

79
-1

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

60
1:

18
2:

d1
80

:6
4e

0:
89

d1
:d

99
d:

d1
d7

:9
e3

f 
on

 0
1/

12
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



REVIEW

98 TECHNOLOGY  l  VOLUME 6  •  NUMBERS 3 & 4  •  SEPTEMBER & DECEMBER 2018
© The Author(s)

 41. Schrimpe-Rutledge, A.C., Codreanu, S.G., Sherrod, S.D. & McLean, J.A. Untargeted 
metabolomics strategies-challenges and emerging directions. J. Am. Soc. Mass. Spec-
trom. 27, 1897–1905 (2016).

 42. Wanichthanarak, K., Fan, S., Grapov, D., Barupal, D.K. & Fiehn, O. Metabox: A toolbox 
for metabolomic data analysis, interpretation and integrative exploration. PLOS ONE 
12, e0171046 (2017).

 43. Kim, D. et al. Using knowledge-driven genomic interactions for multi-omics data 
analysis: Metadimensional models for predicting clinical outcomes in ovarian 
carcinoma. J. Am. Med. Inform. Assoc. 24, 577–587 (2017).

 44. Huang, S., Chaudhary, K. & Garmire, L.X. More is better: Recent progress in multi-omics 
data integration methods. Front. Genet. 8, 84 (2017).

 45. Hartmanshenn, C., Scherholz, M. & Androulakis, I.P. Physiologically-based pharma-
cokinetic models: Approaches for enabling personalized medicine. J. Pharmacokinet. 
Pharmacodyn. 43, 481–504 (2016).

 46. Kesisoglou, F., Chung, J., van Asperen, J. & Heimbach, T. Physiologically based 
absorption modeling to impact biopharmaceutics and formulation strategies in drug 
development-industry case studies. J. Pharm. Sci. 105, 2723–2734 (2016).

 47. Kesisoglou, F. & Mitra, A. Application of absorption modeling in rational design of 
drug product under quality-by-design paradigm. AAPS J. 17, 1224–1236 (2015).

 48. Rowland, M., Peck, C. & Tucker, G. Physiologically-based pharmacokinetics in drug 
development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 51, 45–73 (2011).

 49. Reeve, E., Wiese, M.D. & Mangoni, A.A. Alterations in drug disposition in older adults. 
Expert Opin. Drug Metab. Toxicol. 11, 491–508 (2015).

 50. Nicholson, J.K. Global systems biology, personalized medicine and molecular 
epidemiology. Mol. Syst. Biol. 2, 52 (2006).

 51. Mashberg, A., Boffetta, P., Winkelman, R. & Garfi nkel, L. Tobacco smoking, alcohol 
drinking, and cancer of the oral cavity and oropharynx among U.S. veterans. Cancer 
72, 1369–1375 (1993).

 52. Khalil, F. & Laer, S. Physiologically based pharmacokinetic modeling: Methodology, 
applications, and limitations with a focus on its role in pediatric drug development. 
J. Biomed. Biotechnol. 2011, 907461 (2011).

 53. Rodenburg, W. et al. A framework to identify physiological responses in microarray-
based gene expression studies: Selection and interpretation of biologically relevant 
genes. Physiol. Genomics 33, 78–90 (2008).

 54. National Cancer Institute and National Human Genome Research Institute. Overview 
of the cancer genome atlas (TCGA), https://cancergenome.nih.gov/abouttcga/overview

 55. Marx, V. Biology: The big challenges of big data. Nature 498, 255–260 (2013).
 56. Amazon Web Services-Government, Education, & Nonprofi t Blog. Cloud-enabled 

innovation in personalized medical treatment, https://aws.amazon.com/blogs/publicsec-
tor/cloud-enabled-innovation-in-personalized-medical-treatment/

 57. Gurwitz, D., Lunshof, J.E. & Altman, R.B. A call for the creation of personalized medicine 
databases. Nat. Rev. Drug Discov. 5, 23–26 (2006).

 58. Pavlopoulou, A., Spandidos, D.A. & Michalopoulos, I. Human cancer databases 
(review). Oncol. Rep. 33, 3–18 (2015).

 59. Kanehisa Laboratories. KEGG database (2017), http://www.genome.jp/kegg/kegg1.
html

 60. Butcher, E.C., Berg, E.L. & Kunkel, E.J. Systems biology in drug discovery. Nat. Biotechnol. 
22, 1253–1259 (2004).

 61. McShane, L.M. et al. Criteria for the use of omics-based predictors in clinical trials: 
Explanation and elaboration. BMC Med. 11, (2013).

 62. McShane, L.M. et al. Criteria for the use of omics-based predictors in clinical trials. 
Nature 502, 317–320 (2013).

 63. McShane, L.M. & Polley, M.Y. Development of omics-based clinical tests for prognosis 
and therapy selection: The challenge of achieving statistical robustness and clinical 
utility. Clin. Trials 10, 653–665 (2013).

 64. Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. & Kim, D. Methods of integrat-
ing data to uncover genotype–phenotype interactions. Nat. Rev. Genet. 16, 85–97 
(2015).

 65. Lee, C.H. & Yoon, H.J. Medical big data: Promise and challenges. Kidney Res. Clin. Pract. 
36, 3–11 (2017).

 66. Le Tourneau, C. et al. Treatment algorithms based on tumor molecular profi ling: The 
essence of precision medicine trials. J. Natl. Cancer Inst. 108, (2016).

 67. Fan, J. & Liu, H. Statistical analysis of big data on pharmacogenomics. Adv. Drug Deliv. 
Rev. 65, 987–1000 (2013).

 68. Kamisoglu, K. et al. Understanding physiology in the continuum: Integration of 
information from multiple-omics levels. Front Pharmacol. 8, 91 (2017).

 69. Ovacik, M.A. et al. Pathway modeling of microarray data: A case study of pathway 
activity changes in the testis following in utero exposure to dibutyl phthalate (DBP). 
Toxicol. Appl. Pharmacol. 271, 386–394 (2013).

 70. Ovacik, M.A. et al. Circadian signatures in rat liver: From gene expression to pathways. 
BMC Bioinformatics 11, 540 (2010).

 71. Micheel, C.M., Nass, S.J. & Omenn, G.S. Committee on the review of omics-based 
tests for predicting patient outcomes in clinical trials. (2012).

 72. Karczewski, K.J. & Snyder, M.P. Integrative omics for health and disease. Nat. Rev. 
Genet. 19, 299–310 (2018).

 73. Mackall, C.L. Engineering a designer immunotherapy. Science 359, 990–991 (2018).
 74. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage 

human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

 75. Ried, K., Eng, P. & Sali, A. Screening for circulating tumour cells allows early detection 
of cancer and monitoring of treatment effectiveness: An observational study. Asian 
Pac. J. Cancer Prev. 18, 2275–2285.

 76. Heitzer, E., Perakis, S., Geigl, J.B. & Speicher, M.R. The potential of liquid biopsies for 
the early detection of cancer. NPJ Precis. Oncol. 1, 36 (2017).

 77. Hong, B. & Zu, Y. Detecting circulating tumor cells: Current challenges and new trends. 
Theranostics 3, 377–394 (2013).

 78. Lang, J.E. et al. RNA-Seq of circulating tumor cells in stage II–III breast cancer. Ann. 
Surg. Oncol. 25, 2261–2270 (2018).

 79. Shaw, J.A. et al. Mutation analysis of cell-free DNA and single circulating tumor cells 
in metastatic breast cancer patients with high circulating tumor cell counts. Clin. 
Cancer Res. 23, 88 (2017).

 80. Lallo, A., Schenk, M.W., Frese, K.K., Blackhall, F. & Dive, C. Circulating tumor cells 
and CDx models as a tool for preclinical drug development. Transl. Lung Cancer Res. 
6, 397–408 (2017).

 81. Kirby, B.J. et al. Functional characterization of circulating tumor cells with a prostate-
cancer-specifi c microfl uidic device. PLoS One 7, e35976 (2012).

 82. Han, X., Wang, J. & Sun, Y. Circulating tumor DNA as biomarkers for cancer detection. 
Genomics Proteomics Bioinformatics 15, 59–72 (2017).

 83. Dive, C. & Brady, G. Snapshot: Circulating tumor cells. Cell 168, 742–742.e1 (2017).
 84. Aboulkheyr Es, H., Montazeri, L., Aref, A.R., Vosough, M. & Baharvand, H. Personalized 

cancer medicine: An organoid approach. Trends Biotechnol. 36, 358–371 (2018).
 85. Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of 

human colorectal cancer metastases. Proc. Natl. Acad. Sci. U. S. A. 112, 13308–13311 
(2015).

 86. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of 
colorectal cancer patients. Cell 161, 933–945 (2015).

 87. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision 
medicine. Cancer Discov. 7, 462–477 (2017).

 88. Sun, Y., Haglund, T.A., Rogers, A.J., Ghanim, A.F. & Sethu, P. Review: Microfl uidics 
technologies for blood-based cancer liquid biopsies. Anal. Chim. Acta 1012, 10–29 
(2018).

 89. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts 
in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

 90. Asnacios, A., Naveau, S. & Perlemuter, G. Gastrointestinal toxicities of novel agents 
in cancer therapy. Eur. J. Cancer 45(Suppl. 1), 332–342 (2009).

 91. Strevel, E.L. & Siu, L.L. Cardiovascular toxicity of molecularly targeted agents. Eur. J. 
Cancer 45(Suppl. 1), 318–331 (2009).

 92. Esteva, F.J. Monoclonal antibodies, small molecules, and vaccines in the treatment 
of breast cancer. Oncologist 9(Suppl. 3), 4–9 (2004).

 93. The American Cancer Society. Targeted therapy for breast cancer (2018), https://www.
cancer.org/cancer/breast-cancer/treatment/targeted-therapy-for-breast-cancer.
html#written_by

 94. Wilson, P.M., Labonte, M.J. & Lenz, H.J. Molecular markers in the treatment of 
metastatic colorectal cancer. Cancer J. 16, 262–272 (2010).

 95. Tannock, I.F. & Hickman, J.A. Limits to personalized cancer medicine. N. Engl. J. Med. 
375, 1289–1294 (2016).

 96. Szalat, R. & Munshi, N.C. Next-generation sequencing informing therapeutic decisions 
and personalized approaches. Am. Soc. Clin. Oncol. Educ. Book 35, e442–e448 (2016).

 97. Doostparast Torshizi, A. & Wang, K. Next-generation sequencing in drug development: 
Target identifi cation and genetically stratifi ed clinical trials. Drug Discov. Today 23, 
1776–1783 (2018).

 98. Siu, L.L., Conley, B.A., Boerner, S. & LoRusso, P.M. Next-generation sequencing to 
guide clinical trials. Clin. Cancer Res. 21, 4536–4544 (2015).

 99. Horak, P., Frohling, S. & Glimm, H. Integrating next-generation sequencing into clinical 
oncology: Strategies, promises and pitfalls. ESMO Open 1, e000094 (2016).

100. Garon, E.B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. 
Engl. J. Med. 372, 2018–2028 (2015).

101. Merck & Co., Inc. Merck’s keytruda® (pembrolizumab) plus chemotherapy signifi cantly 
improved overall survival in fi rst-line treatment of metastatic squamous non-small cell 
lung cancer in phase 3 keynote-407 study (2018), http://investors.merck.com/news/
press-release-details/2018/Mercks-KEYTRUDA-pembrolizumab-Plus-Chemother-
apy-Signifi cantly-Improved-Overall-Survival-in-First-Line-Treatment-of-Metastatic-
Squamous-Non-Small-Cell-Lung-Cancer-in-Phase-3-KEYNOTE-407-Study/default.
aspx

102. Radhakrishnan, D., Robinson, A. & Ogunnaike, B. Controlling the glycosylation profi le 
in mAbs using time-dependent media supplementation. Antibodies 7, 1 (2018).

103. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 
480, 480–489 (2011).

104. Chen, L. & Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. 
Nat. Rev. Immunol. 13, 227–242 (2013).

105. Hargadon, K.M., Johnson, C.E. & Williams, C.J. Immune checkpoint blockade therapy 
for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Im-
munopharmacol. 62, 29–39 (2018).

106. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. 
Immunity 1, 405–413 (1994).

107. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response 
of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

1830002.indd   981830002.indd   98 1/8/2019   10:22:17 AM1/8/2019   10:22:17 AM

T
ec

hn
ol

og
y 

20
18

.0
6:

79
-1

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

60
1:

18
2:

d1
80

:6
4e

0:
89

d1
:d

99
d:

d1
d7

:9
e3

f 
on

 0
1/

12
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



REVIEW

99TECHNOLOGY  l  VOLUME 6  •  NUMBERS 3 & 4  •  SEPTEMBER & DECEMBER 2018
© The Author(s)

108. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic 
melanoma. N. Engl. J. Med. 363, 711–723 (2010).

109. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like 
autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying 
immunoreceptor. Immunity 11, 141–151 (1999).

110. Wei, S.C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 
checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

111. Weber, J.S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma 
who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, 
controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

112. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-
cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

113. Motzer, R.J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. 
Engl. J. Med. 373, 1803–1813 (2015).

114. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy 
(CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol 18, 312–322 
(2017).

115. Ansell, S.M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s 
lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

116. Prasad, V., Kaestner, V. & Mailankody, S. Cancer drugs approved based on biomarkers 
and not tumor type-FDA approval of pembrolizumab for mismatch repair-defi cient 
solid cancers. JAMA Oncol. 4, 157–158 (2018).

117. Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated 
locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, 
open-label, phase 3 randomised controlled trial. Lancet 391, 748–757 (2018).

118. Antonia, S.J. et al. Durvalumab after chemoradiotherapy in stage iii non-small-cell 
lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

119. Zappasodi, R., Merghoub, T. & Wolchok, J.D. Emerging concepts for immune check-
point blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

120. Wang, B. et al. Combination cancer immunotherapy targeting PD-1 and GITR can 
rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci. Immunol. 3, 
(2018).

121. Wei, S.C., Duffy, C.R. & Allison, J.P. Fundamental mechanisms of immune checkpoint 
blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

122. Gibney, G.T., Weiner, L.M. & Atkins, M.B. Predictive biomarkers for checkpoint 
inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

123. Ng Tang, D. et al. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic 
biomarker for anti-CTLA-4 therapy. Cancer Immunol. Res. 1, 229–234 (2013).

124. Hu, Z., Ott, P.A. & Wu, C.J. Towards personalized, tumour-specific, therapeutic 
vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).

125. Brennick, C.A., George, M.M., Corwin, W.L., Srivastava, P.K. & Ebrahimi-Nik, H. 
Neoepitopes as cancer immunotherapy targets: Key challenges and opportunities. 
Immunotherapy 9, 361–371 (2017).

126. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal 
carcinoma. Cell Rep. 17, 1206 (2016).

127. Tran, E. et al. Cancer immunotherapy based on mutation-specifi c CD4+ T cells in a 
patient with epithelial cancer. Science 344, 641–645 (2014).

128. National Cancer Institute. Biological therapies for cancer (2018), https://www.
cancer.gov/about-cancer/treatment/types/immunotherapy/bio-therapies-fact-
sheet?redirect=true

129. Kantoff, P.W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate 
cancer. N. Engl. J. Med. 363, 411–422 (2010).

130. Ye, B. et al. Engineering chimeric antigen receptor-T cells for cancer treatment. Mol. 
Cancer 17, 32 (2018).

131. Morris, E.C. & Stauss, H.J. Optimizing T-cell receptor gene therapy for hematologic 
malignancies. Blood 127, 3305–3311 (2016).

132. Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. & June, C.H. Chimeric antigen receptor-
modifi ed T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

133. Hirawat, S. Novartis, CTL019 (tisagenlecleucel) in pediatric and young adult patients 
with relapsed/refractory B-cell acute lymphoblastic leukemia (2017), https://www.
fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/
OncologicDrugsAdvisoryCommittee/UCM567385.pdf

134. Carroll, J. Endpoints News, Novartis wins a key OK for Kymriah, but continuing manufactur-
ing woes hobble rollout — rival Gilead Car-T breaks into Europe (2018), https://endpts.
com/novartis-wins-a-key-ok-for-kymriah-but-continuing-manufacturing-woes-
affl ict-their-rollout-rival-gilead-breaks-into-europe/?utm_medium=email&utm_cam-
paign=552%20Mon%2082718%20Bottom%20line%20Novartis%20cant%20
handle%20full%20CAR-T%20rollout%20Alnylam%20counterattacks%20
against%20Pfizers%20tafamidis&utm_content=552%20Mon%2082718%20
Bottom%20line%20Novartis%20cant%20handle%20full%20CAR-T%20
rollout%20Alnylam%20counterattacks%20against%20Pfi zers%20tafamidis+CID_
b327e72c32bc714a5debf124c0c7606c&

135. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new 
cancer-associated genes. Nature 499, 214–218 (2013).

136. Jacobs, T.W., Gown, A.M., Yaziji, H., Barnes, M.J. & Schnitt, S.J. Specifi city of HercepT-
est in determining HER-2/neu status of breast cancers using the United States Food 
and Drug Administration-approved scoring system. J. Clin. Oncol. 17, 1983–1987 
(1999).

137. Schechter, A.L. et al. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr 
tumour antigen. Nature 312, 513–516 (1984).

138. Cho, H.S. et al. Structure of the extracellular region of HER2 alone and in complex 
with the Herceptin Fab. Nature 421, 756–760 (2003).

139. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 
for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 
(2001).

140. U.S. Food and Drug Administration. List of cleared or approved companion diagnostic 
devices (in vitro and imaging tools) (2018), https://www.fda.gov/medicaldevices/
productsandmedicalprocedures/invitrodiagnostics/ucm301431.htm

141. Alqahtani, Q.M., Crowley, A., Rapp, S. & Cushman-Vokoun, A.M. QIAGEN therascreen 
KRAS RGQ assay, QIAGEN KRAS pyro assay, and dideoxy sequencing for clinical 
laboratory analysis of KRAS mutations in tumor specimens. Lab. Med. 47, 30–38 
(2016).

142. U.S. Food and Drug Administration. Paving the way for personalized medicine: FDA’S 
role in a new era of medical product development (2013), https://www.fdanews.com/
ext/resources/fi les/10/10-28-13-Personalized-Medicine.pdf

143. U.S. Food and Drug Administration. Precision medicine (2018), https://www.
fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/
PrecisionMedicine-MedicalDevices/default.htm

144. U.S. Food and Drug Administration. 21st century cures act (2018), https://www.fda.
gov/RegulatoryInformation/LawsEnforcedbyFDA/Signifi cantAmendmentstotheFD
CAct/21stCenturyCuresAct/default.htm

145. Konski, A.F. Over 30% of new drug approvals in 2017 were personalized medicines, https://
www.personalizedmedicinebulletin.com/2018/02/19/3631/

146. Davio, K. FDA approved a record number of personalized medicines in 2017 (2018), http://
www.ajmc.com/focus-of-the-week/fda-approved-a-record-number-of-personalized-
medicines-in-2017

147. Personalized Medicine Coalition. Personalized medicine regulation pathways for 
oversight of diagnostics, http://www.personalizedmedicinecoalition.org/Userfi les/
PMC-Corporate/fi le/pmc_pathways_for_oversight_diagnostics.pdf

148. Centers for Medicare & Medicaid Services. Clinical laboratory improvement amendments 
(CLIA) (2018), https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/
index.html?redirect=/CLIA

149. U.S. Food and Drug Administration. Companion diagnostics (2017), https://www.
fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/
ucm407297.htm

150. U.S. Food and Drug Administration. Table of pharmacogenomic biomarkers in drug 
labeling (2018), https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

151. U.S Food and Drug Administration. In vitro diagnostics (2018), https://www.fda.gov/
medicaldevices/productsandmedicalprocedures/invitrodiagnostics/default.htm

152. U.S. Food and Drug Administration. Discussion paper on laboratory developed tests (LDTs) 
(2017), https://www.fda.gov/downloads/MedicalDevices/ProductsandMedicalPro-
cedures/InVitroDiagnostics/LaboratoryDevelopedTests/UCM536965.pdf

153. Kass-Hout, T.A. & Johanson, E. FDA launches precisionFDA to harness the power of 
scientifi c collaboration (2015), https://blogs.fda.gov/fdavoice/index.php/2015/12/
fda-launches-precisionfda-to-harness-the-power-of-scientifi c-collaboration/

154. U.S. Food and Drug Administration. Laboratory developed tests (2018), https://
www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/
laboratorydevelopedtests/default.htm

155. Mezher, M. Endpoints News, FDA, NIH look to streamline oversight of gene therapies 
(2018), https://endpts.com/fda-nih-look-to-streamline-oversight-of-gene-therapies/

156. Centers for Medicare & Medicaid Services. NHE fact sheet (2018), https://www.
cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/
nationalhealthexpenddata/nhe-fact-sheet.html

157. Mullin, R. Cost to develop new pharmaceutical drug now exceeds $2.5 b. Sci. Am. 24, 
(2014).

158. Falconi, A., Lopes, G. & Parker, J.L. Biomarkers and receptor targeted therapies reduce 
clinical trial risk in non-small-cell lung cancer. J. Thorac. Oncol. 9, 163–169 (2014).

159. Parker, J.L. et al. Impact of biomarkers on clinical trial risk in breast cancer. Breast 
Cancer Res. Treat. 136, 179–185 (2012).

160. Parker, J.L., Zhang, Z.Y. & Buckstein, R. Clinical trial risk in Non-Hodgkin’s lymphoma: 
Endpoint and target selection. J. Pharm. Pharm. Sci. 14, 227–235 (2011).

161. Stoekle, H.C. et al. Molecular tumor boards: Ethical issues in the new era of data 
medicine. Sci. Eng. Ethics 24, 307–322 (2018).

162. Sultana, J., Cutroneo, P. & Trifi ro, G. Clinical and economic burden of adverse drug 
reactions. J. Pharmacol. Pharmacother. 4, S73–S77 (2013).

163. Jakka, S. & Rossbach, M. An economic perspective on personalized medicine. HUGO 
J. 7, 1 (2013).

164. Brixner, D. et al. The effect of pharmacogenetic profi ling with a clinical decision support 
tool on healthcare resource utilization and estimated costs in the elderly exposed to 
polypharmacy. J. Med. Econ. 19, 213–228 (2016).

165. Marrer, E. & Dieterle, F. Biomarkers in oncology drug development: Rescuers or 
troublemakers? Expert Opin. Drug Metab. Toxicol. 4, 1391–1402 (2008).

166. Business Wire. Foundation medicine announces national agreement with United Healthcare 
for FoundationOne® in metastatic non-small cell lung cancer (2015), http://investors.
foundationmedicine.com/news-releases/news-release-details/foundation-medicine-
announces-national-agreement

1830002.indd   991830002.indd   99 1/8/2019   10:22:17 AM1/8/2019   10:22:17 AM

T
ec

hn
ol

og
y 

20
18

.0
6:

79
-1

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

60
1:

18
2:

d1
80

:6
4e

0:
89

d1
:d

99
d:

d1
d7

:9
e3

f 
on

 0
1/

12
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



REVIEW

100 TECHNOLOGY  l  VOLUME 6  •  NUMBERS 3 & 4  •  SEPTEMBER & DECEMBER 2018
© The Author(s)

167. Pocius, D.M. Genetic tests and precision medicine start to win acceptance by some payers; 
pathologists and clinical laboratories have opportunity as advisors (2016), https://www.
darkdaily.com/genetic-tests-and-precision-medicine-start-to-win-acceptance-
by-some-payers-pathologists-and-clinical-laboratories-have-opportunity-as-
advisors-314/

168. Centers for Medicare & Medicaid Services. CMS roadmaps overview, https://www.
cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/QualityIni-
tiativesGenInfo/Downloads/RoadmapOverview_OEA_1-16.pdf

169. Stoeklé, H.-C. et al. Molecular tumor boards: Ethical issues in the new era of data 
medicine. Sci. Eng. Ethics. (2017).

170. Mamzer, M.F. et al. Partnering with patients in translational oncology research: Ethical 
approach. J. Transl. Med. 15, 74 (2017).

171. Meslin, E.M. & Cho, M.K. Research ethics in the era of personalized medicine: Updating 
science’s contract with society. Public Health Genomics 13, 378–384 (2010).

172. Vogenberg, F.R., Barash, C.I. & Pursel, M. Personalized medicine part 2: Ethical, legal, 
and regulatory issues. P T 35, 624–642 (2010).

173. Bayer, R. & Galea, S. Public health in the precision-medicine era. N. Engl. J. Med. 373, 
499–501 (2015).

174. Schwaederle, M. et al. Association of biomarker-based treatment strategies with 
response rates and progression-free survival in refractory malignant neoplasms: A 
meta-analysis. JAMA Oncol. 2, 1452–1459 (2016).

175. Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 
2012, 251364 (2012).

176. Hagemann, I.S. Chapter 1 — Overview of technical aspects and chemistries of next-
generation sequencing. In Clinical Genomics (Academic Press, 2015), pp. 3–19.

177. University of Rhode Island Genomics and Sequencing Center, Illumina MiSeq next 
generation sequencer, https://web.uri.edu/gsc/illumina-miseq-next-generation-
sequencer/

178. Illumina. MiSeq system (2016), https://www.illumina.com/documents/products/
datasheets/datasheet_miseq.pdf

179. Illumina, Inc. Illumina sequencing platforms (2018), https://www.illumina.com/systems/
sequencing-platforms.html

180. Thermo Fisher Scientific. Solid (2018), https://www.thermofisher.com/us/en/
home/life-science/sequencing/next-generation-sequencing/solid-next-generation-
sequencing/solid-next-generation-sequencing-systems-reagents-accessories.
html

181. Pacifi c Biosciences of California, Inc. SMRT sequencing (2018), https://www.pacb.
com/smrt-science/smrt-sequencing/

182. Zhang, Y., Fonslow, B.R., Shan, B., Baek, M.C. & Yates, J.R. 3rd., Protein analysis by 
shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

183. Cox, J. et al. Andromeda: A peptide search engine integrated into the maxquant 
environment. J. Proteome Res. 10, 1794–1805 (2011).

184. Kusebauch, U. et al. Using PeptideAtlas, SRMAtlas, and PASSEL: Comprehensive 
resources for discovery and targeted proteomics. Curr. Protoc. Bioinformatics 13.25. 
1–13.25. 28 (2014).

185. Rauniyar, N. & Yates, J.R. Isobaric labeling-based relative quantifi cation in shotgun 
proteomics. J. Proteome. Res. 13, 5293–5309 (2014).

186. Catherman, A.D., Skinner, O.S. & Kelleher, N.L. Top down proteomics: Facts and 
perspectives. Biochem. Biophys. Res. Commun. 445, 683–693 (2014).

187. DeHart, C.J., Fellers, R.T., Fornelli, L., Kelleher, N.L. & Thomas, P.M. Bioinformatics 
analysis of top-down mass spectrometry data with ProSight Lite. Methods Mol. Biol. 
381–394 (2017).

188. Cristobal, A. et al. Toward an optimized workfl ow for middle-down proteomics. Anal. 
Chem. 89, 3318–3325 (2017).

189. Want, E.J. et al. Solvent-dependent metabolite distribution, clustering, and protein 
extraction for serum profi ling with mass spectrometry. Anal. Chem. 78, 743–752 
(2006).

190. Yanes, O., Tautenhahn, R., Patti, G.J. & Siuzdak, G. Expanding coverage of 
the metabolome for global metabolite profiling. Anal. Chem. 83, 2152–2161 
(2011).

191. Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J. & Nielsen, J. Global 
metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast 22, 
1155–1169 (2005).

192. Smith, C.A. et al. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 27, 
747–751 (2005).

193. Wishart, D.S. et al. HMDB 3.0 — The Human Metabolome Database in 2013. Nucleic 
Acids Res. 41, D801–D807 (2013).

194. Horai, H. et al. MassBank: A public repository for sharing mass spectral data for life 
sciences. J. Mass Spectrom. 45, 703–714 (2010).

195. Roberts, L.D., Souza, A.L., Gerszten, R.E. & Clish, C.B. Targeted metabolomics. Curr. 
Protoc. Mol. Biol. 30.2.1–30.2.24 (2012).

1830002.indd   1001830002.indd   100 1/8/2019   10:22:17 AM1/8/2019   10:22:17 AM

T
ec

hn
ol

og
y 

20
18

.0
6:

79
-1

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

60
1:

18
2:

d1
80

:6
4e

0:
89

d1
:d

99
d:

d1
d7

:9
e3

f 
on

 0
1/

12
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /URWChanceryL-MediItal
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        30
        30
        30
        30
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 14.177000
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


