The Development of a 4 DoF Robotic Manipulator for Automated Venipuncture Max Balter¹, Alvin Chen¹, Timothy Maguire¹, Martin L. Yarmush¹ RUTGERS ¹Department of Biomedical Engineering, Rutgers University, Piscataway, NJ THE STATE UNIVERSITY

OF NEW JERSEY

Clinical Problem

- Venipuncture is the most ubiquitous clinical routine practiced in the U.S. (1.4 B/yr^1) and the leading cause of medical injury for both patients ($2 M/yr^2$) and practitioners ($1 M/yr^3$).
- First-stick failure rates are exacerbated (>60%)⁴ in difficult populations, including pediatric, geriatric, obese, and chronically-ill patients. Repeated failures significantly increase the risks of tissue damage, contaminated sharps injuries, and bloodborne disease transmission⁵. In total, venipuncturerelated complications are estimated to cost the U.S. healthcare system close to \$5 billion/year¹.

- Current imaging technologies are unable to improve first-stick success, completion time, and practitioner safety^{6,7}.
- Robotic needle insertion systems are large, complex, and expensive; and none are fully automated nor miniaturized enough to be implemented for venipuncture.
- <u>Project goal</u>: Develop an autonomous medical robot that improves venipuncture accuracy, speed, and safety by drawing blood and delivering IV fluids with >95% first-stick success in <2 min^{8,9}.

Current Venipuncture Methods				
	Manual Phlebotomy	歹 SonoSite		Veinlite
User Needs				
Mode of operation	VIS light & palpation	Ultrasound	NIR light	Trans-illumination (VIS light)
Completion time	22.9 min ¹	16.1 min ⁴	13.5 min ⁶	11.75 min ⁷
First-stick accuracy	50-80% ¹	74% ⁴	65% ⁶	60% ⁷
Portable	~	-	~	~
Automated intervention	-	-	-	-
Practitioner safety	-	-	-	-
US Market Share	97%	1.5%	1.0%	0.5%

Device Design

a. <u>Engineering design requirements:</u>

Design Criteria	Engineering Constraint		
Accuracy	Cannulate ø1.0–3.5 mm veins		
Imaging	Image veins up to 10 mm deep		
Real-time tracking	Segment and track veins at >15 Hz loop rate		
Size & weight	Portable (<30x30x30 cm) & lightweight (<10 kg)		
Time of procedure	Perform the venipuncture in <5 min		
Cost	Total device materials cost <\$6000		

*Design specifications determined from market research of 13 U.S. hospitals, 2 diagnostic labs (Quest and LabCorp), 140 healthcare professionals, 256 parents, and 50 children.

b. <u>4th-generation prototype device:</u>

