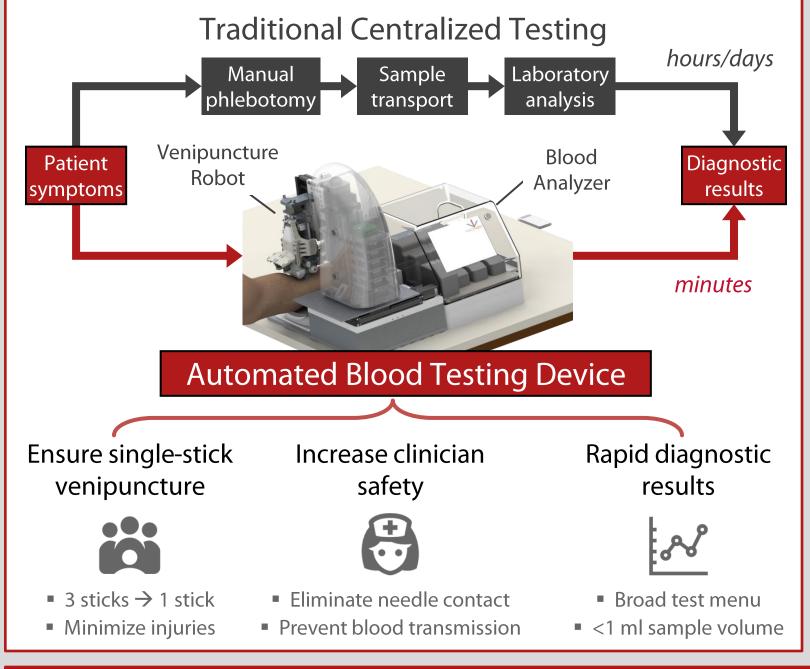
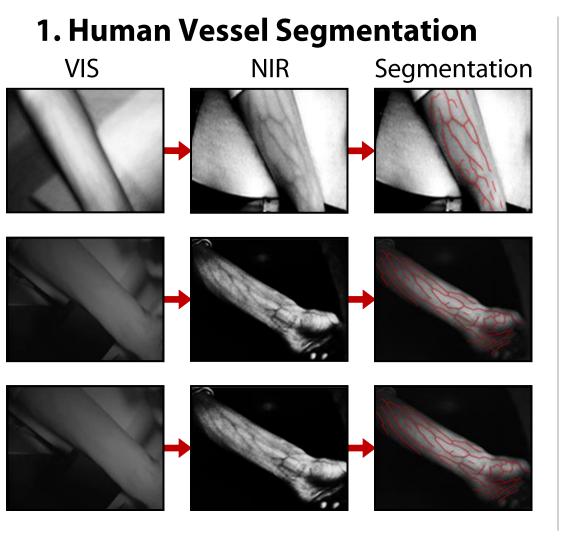
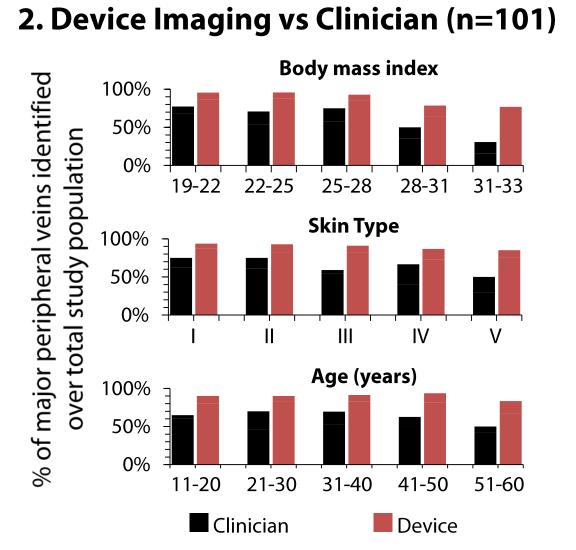
Automated Device for Rapid Blood Draws and Diagnostic Analysis

ITGERS


Max Balter¹, Alvin Chen¹, Timothy Maguire¹, Martin L. Yarmush¹, Ramin Haghgooie², Kenneth Kotz², Robert Granier², Mehmet Toner²

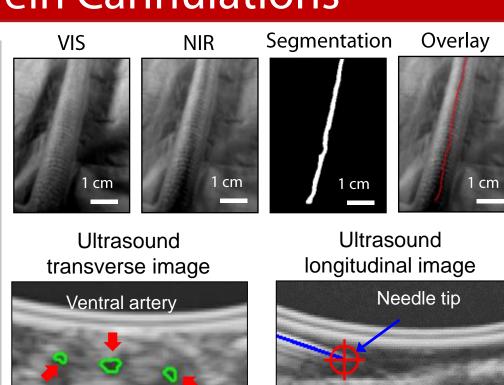
¹Department of Biomedical Engineering, Rutgers University, Piscataway, NJ ²Massachusetts General Hospital, Boston, MA


Clinical Problem

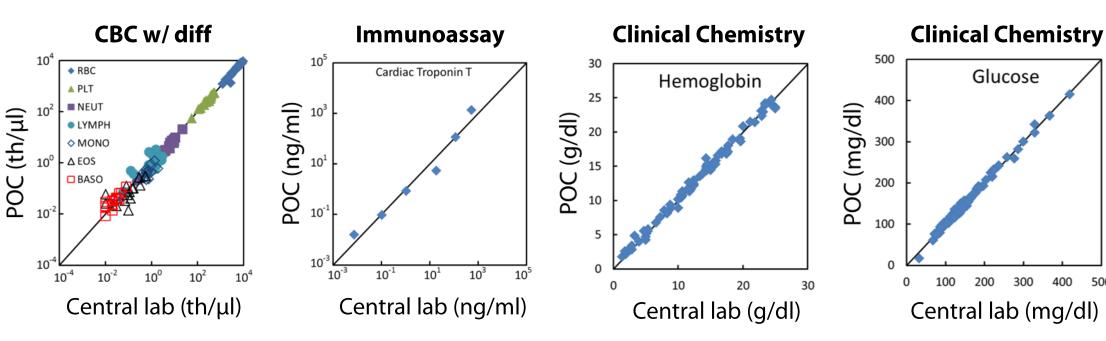

- Blood testing is the most ubiquitous clinical procedure in the world, and accounts for 90% of diagnostic procedures administered in ambulatory and emergency care settings.
- However, manual blood draw success rates depend heavily on clinician skill and patient physiology, and results are generated almost exclusively in centralized labs from large-volume samples using labor-intensive analytical techniques.
- Project goal: Develop a portable device that enables complete end-to-end blood testing by performing blood draws and providing diagnostic results in fully automated fashion.

Integrated Blood Draw and Analysis Device 1. 3D Near IR and Ultrasound Imaging 2. Robotic Cannulation 3. Sample Handling **4. Analytical Modules** a. Vein segmentation c. Blood flow detection a. 5 DOF positioning unit a. Automated sample prep a. Photometry b. 3 DOF manipulator (Clinical chemistry, c. Adaptive motion control immunoassays) b. 3D reconstruction d. Real-time tracking Vein target b. Robotic pipetter (x,y,z)(precise reagent handling) b. Flow cytometry (Hematology) c. Disposable cartridge Flexible assay menu

Near Infrared Human Imaging Study

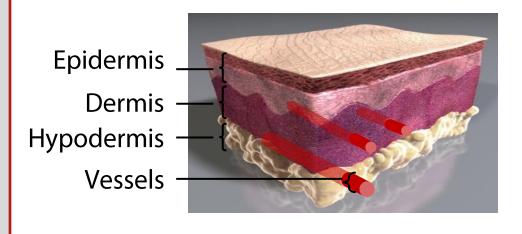

28% increase in total number of veins detected compared to clinical evaluation

In Vivo Rat Lateral Tail Vein Cannulations


- Rat tail vein diameter ≈ pediatric vein (1 mm)
- Compare automated vs. manual venipuncture
- Evaluate: Success rate, time, 0.5 ml collection

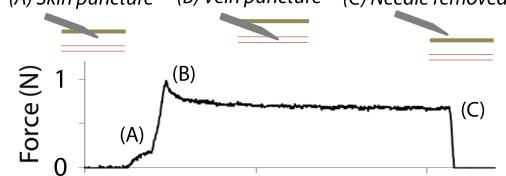
0.5 ml blood draw	A

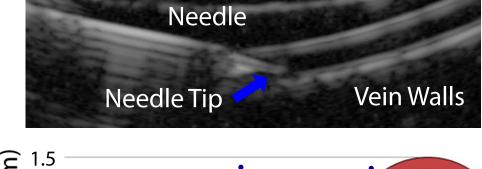
Ongoing Cannulation Results				
Animal (#)	Blood flash	Needle tip error (mm)	Time (min)	
1	✓	0.114	1.4	
2		0.095	2.2	
3	✓	0.152	2.0	
4	✓	0.173	1.3	
5	✓	_	1.8	

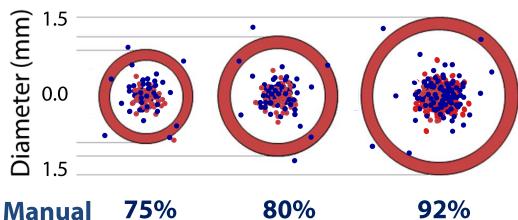

Point-of-Care Blood Analysis

- Capable of running up to 35 tests off of one <1 ml blood sample (most common shown)
- Equivalent performance and dynamic range compared to central lab instruments

In Vitro Device Evaluation


1. Tissue-Mimicking Phantoms


Tissue Layer	Human	Phantom	
Epidermis (0.06 mm)	Melanin (2–45%)	India Ink	
Dermis (1.1–3.2 mm)	Collagen, elastin	Gelatin, BSA	
Hypodermis (1.1–5.5 mm)	Adipose tissue	Gelatin, Intralipid	
Veins (0.7–3.5 mm)	Elastin/collagen tubing	Silicone tubing	
Whole Blood	8 µm RBCs, blood serum	8 µm beads, glycerol	


2. Phantom Cannulations (n=288)

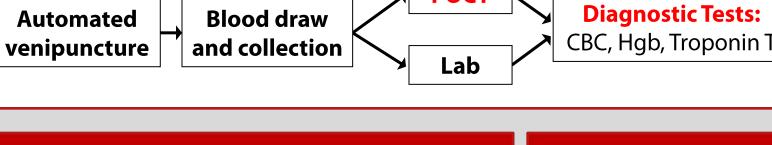
Force profile during puncture events (A) Skin puncture (B) Vein puncture (C) Needle removed

B-mode US image during venipuncture

100% **Device**

Phantoms simulate optical, mechanical, and acoustic tissue properties Force profile indicates needle tip position within tissue

First-stick accuracy >98% across 288 models; completion time <30 sec


Future Work – Clinical Feasibility

IRB Human Adult Pilot Study

- Demonstrate that the system can be used in humans
- Compare robotic vs. manual venipuncture
- Evaluate: success rate, patient safety, 2 ml collection
- Compare blood results obtained on-board with benchtop instruments on <1 ml sample volume

100%

Acknowledgements

NATIONAL

INSTRUMENTS

References

- Chen et al. Portable robot for autonomous venous access using 3D near IR image guidance, Technology 2013; 1(1):72-80.
- Balter et al. The system design and evaluation of a 7-DOF image guided
- venipuncture robot. IEEE Transactions on Robotics 2015; 31(4):1044-1053. Chen et al. Real-time needle steering in response to rolling vein deformation by a 9-DOF venipuncture robot. IEEE/RSJ Int Conf on Intelligent Robots, 2015. 4. Chen et al. Multilayered tissue-mimicking phantoms with tunable mechanical optical, and acoustic properties. Medical Physics. (in review)
- Balter et al. Adaptive motion control of a robotic venipuncture device based on stereo vision, ultrasound, and force guidance. IEEE Transactions on Industrial
- Kotz et al. Inertial focusing cytometer with integrated optics for particle characterization, Technology 2013; 1(1):27-36